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1 INTRODUCTION

The microservice architecture has been widely adopted in modern

cloud environments. It greatly improves the flexibility of cloud

applications by splitting a large and complex application into mul-

tiple microservices. To manage the communication among services,

as an emerging microservice deployment paradigm, service mesh
goes further. It builds a dedicated communication infrastructure

layer that can transparently provide some standard features for mi-

croservices, such as load balancing, encryption, and access control.

Benefiting from this, developers can focus on their applications’

functionalities, and administrators can manage the inter-service

communication elegantly and flexibly.

Figure 1 (a) shows a typical service mesh architecture. It deploys

a sidecar for each microservice instance to proxy inbound and

outbound traffic, thereby transparently handling the inter-service

communication. To customize the behavior of these sidecars, the

administrator can issuemanagement policies to a centralized control
plane. After receiving a policy, the control plane converts it into

configurations for the related sidecars and deploys them via the

data plane management APIs. Ultimately, all sidecars will work

according to the administrator’s intention.

This seems promising. Ideally, as shown in Figure 1 (b), the

administrator’s intentions, system configurations, and actual sys-

tem behavior should be consistent. However, this is currently a

challenging task for service mesh because: (1) The administrator’s

intention may not be configured correctly. To operate the services

as desired, administrators must understand what is happening in

the mesh and translate the management intentions into correct

policies, which is unintuitive and error-prone. Although some tools

make this process more friendly to administrators via interactive

methods [3], we can still see a large number of posts daily in the

community forum asking how to achieve a specific management

intention [1, 2]. (2) The configured policies may not be reflected in

the actual behavior of the data plane. Due to misconfigurations [7],
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Figure 1: A typical architecture of service mesh. And the re-

lationships among intention, configuration, and behavior.

conversion errors, or semantic differences between planes, some-

times the configured policies will not be installed correctly in the

data plane. Also, configurations directly injected into the data plane

will not be perceived by the control plane, resulting in unmapped

settings between the planes. Besides, the installed data plane poli-

cies may not be enforced appropriately because of incorrect data

plane implementation or runtime failures.

To ensure the consistencies, there are two types of existing work

dedicated to configuration inspection for microservices. The first is

configuration validation [3], which checks the correctness of the

syntax or semantics of policies to mitigate misconfigurations. The

second is configuration audit [4], which checks a series of key pa-

rameters to determine whether the configuration conforms to a set

of general principles indicated in best practices. However, staying

in the control plane, both of them are located in the intention-

configuration process and cannot verify the enforcement of policies

or describe the actual system behavior.

Therefore, the configuration inspection considering the data

plane behavior is the missing part. To advance the state-of-the-art,

we present MeshScope, a bottom-up approach that can inspect

the configuration in service mesh from the perspective of system

behavior (Figure 1 (b)(3)), and feedback the actual behavior to the ad-

ministrator to guide the subsequent configuration (Figure 1 (b)(4)).

To this end, we address two fundamental challenges: (1) how

to examine the configurations from the data plane, and (2) how to

describe the actual behavior of the mesh. To solve the first chal-

lenge, we design a novel hybrid policy verification mechanism. It

statically checks the differences between the policies installed in

the sidecars and the policies configured in the control plane, and

dynamically verifies the enforcement of the installed policies in

a distributed manner. To solve the second challenge, we analyze

all the inconsistencies found and describe the system behavior in

terms of traffic management and security.

Over the past few years, network troubleshooting based on active

probe testing has been studied in the context of packet-switched

networks [6, 8]. However, the complexity of service mesh policies

introduces new challenges to both the generation of test workloads

and the verification of system behavior. First, service mesh employs
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Figure 2: The architecture of MeshScope and an example of the dynamic policy verification.

various types of policies and rich matching conditions (e.g., ser-

vice identity, API, path, method, version, etc.) to achieve flexible

management. The combination of these conditions and the inter-

action between policies make it difficult to generate high-quality

detection requests. Second, various policy actions, such as load

balancing, authorization, and weighted routing, can lead to chal-

lenges in deducing and verifying system behavior. Nevertheless,

the sidecar’s computing power is much stronger than that of the

switch so that we can achieve efficient distributed testing and meet

the performance requirements in practice.

2 SYSTEM DESIGN

Figure 2 demonstrates the architecture of MeshScope. It comprises

three major components: the plugins embedded in the sidecar of

each microservice instance, a backend responsible for managing

the tests and analyzing the system behavior, and a series ofmessage
queues for caching test results.

2.1 Policy Verification

Our hybrid policy verification mechanism includes a continuous

static verification and an on-demand dynamic verification.

The static policy verification is mainly used to detect the con-

sistency issues between the control plane and the data plane con-

tinuously. As shown in the yellow flow of Figure 2 (a), the Policy
Inference Engine extracts the configuration installed on the side-

car, such as network filter chains, routing rules, etc., deduces the

policies in control plane in reverse, and then passes them to the

backend. Subsequently, the Policy Comparator at the backend com-

pares the inferred policies with the ones obtained from the control

plane to find potential inconsistencies.

The dynamic policy verification is mainly responsible for veri-

fying the enforcement of data plane configurations. We design a

set of verification methods for different types of policies. For ex-

ample, regarding an inbound policy like authorization policy, we

perform the probe testing based on an invitation-request mode.

Specifically, to receive a desired probe request for verification, the
Dynamic Test Agent generates an invitation contains the desired

request, and sends it to the expected sender. After receiving the

invitation, the sender initiates the specified request to the receiver,

thus completing a round of dynamic verification. As shown in Fig-

ure 2 (b), to verifying Policy 1 for service A, its Dynamic Test
Agent sends an invitation to the expected sender (B). Afterwards,
the sidecar of B sends A the request it needs to check whether

Policy 1 has been enforced. For the policies with no specific de-

sired sender, such as Policy 2, the receiver sends invitations to

random services. All sidecars perform this process distributively,

but are linked together according to the business logic implied in

the policies. Finally, agents send the failed policies to the backend

for subsequent analysis.

Typically each installed policy requires one probe request. Nev-

ertheless, for some configurations such as weighted routing and rate
limiting, we may need to generate multiple requests for a policy to

check their status. Besides, some types of policies are orthogonal,

such as access control and load balancing, thus we can take advan-

tage of this and verify multiple policies with one probe request.

2.2 Behavior Analysis

With the inconsistencies between system behavior and configura-

tions, we further aim to analyze them and provide a mesh behavior

view to guide the administrator’s configuration.

First, we can identify the root causes of the collected anomalies.

For example, a stable inconsistency between the data plane con-

figuration and the actual behavior implies an incorrect data plane

implementation. Second, we can provide preliminary repair sugges-

tions based on some insights. For example, since different instances

of the same microservice usually have the same configuration, we

can model and calculate the distance between services to infer cor-

rect configurations. For inconsistencies caused by runtime failures,

we can try to resolve them by restarting the service instances.

In service mesh, management intentions may change contin-

uously with evolved business logic and current operating state,

which are difficult to predict in advance. Therefore, instead of deal-

ing with the intention, we are committed to presenting the actual

system behavior for the administrators. There are two main kinds

of policies in service mesh: traffic management and security. For the

former, we mainly show whether the mesh’s behavior is consistent

with the configuration. In the security aspect, we list all possible

operations in the current configuration space.

3 ONGOING AND FUTUREWORK

Currently, we are working on the implementation of the proposed

policy verification mechanism. We intend to employ popular mi-

croservices applications, such as Online Boutique [5], and policy

sets to reasonably evaluate MeshScope. In future work, we aim to

utilize emerging technologies to investigate the identified inconsis-

tencies, and automate the diagnosis and repair of misconfigurations.
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