
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019 349

Fault Management in Software-Defined
Networking: A Survey

Yinbo Yu , Student Member, IEEE, Xing Li, Xue Leng, Student Member, IEEE, Libin Song,

Kai Bu , Member, IEEE, Yan Chen, Fellow, IEEE, Jianfeng Yang, Member, IEEE,
Liang Zhang, Kang Cheng, and Xin Xiao

Abstract—Software-defined networking (SDN) has emerged as
a new network paradigm that promises control/data plane sep-
aration and centralized network control. While these features
simplify network management and enable innovative network-
ing, they give rise to persistent concerns about reliability. The
new paradigm suffers from the disadvantage that various net-
work faults may consistently undermine the reliability of such a
network, and such faults are often new and difficult to resolve
with existing solutions. To ensure SDN reliability, fault manage-
ment, which is concerned with detecting, localizing, correcting
and preventing faults, has become a key component in SDN net-
works. Although many SDN fault management solutions have
been proposed, we find that they often resolve SDN faults from
an incomplete perspective which may result in side effects. More
critically, as the SDN paradigm evolves, additional fault types
are being exposed. Therefore, comprehensive reviews and con-
stant improvements are required to remain on the leading edge
of SDN fault management. In this paper, we present the first
comprehensive and systematic survey of SDN faults and related
management solutions identified through advancements in both
the research community and industry. We apply a systematic clas-
sification of SDN faults, compare and analyze existing SDN fault
management solutions in the literature, and conduct a gap anal-
ysis between solutions developed in an academic research context
and practical deployments. The current challenges and emerging
trends are also noted as potential future research directions. This
paper aims to provide academic researchers and industrial engi-
neers with a comprehensive survey with the hope of advancing
SDN and inspiring new solutions.

Manuscript received October 9, 2017; revised March 22, 2018 and
July 1, 2018; accepted September 1, 2018. Date of publication September
6, 2018; date of current version February 22, 2019. This work was supported
in part by the National Key Research and Development Program of China
under Grant 2016YFC0106301, in part by the Huawei HARP under Grant
HO2016050002CH, and in part by the Provincial Science and Technology
Pillar Program of Hubei under Grant 2017AAA027, Grant 2017AAA042,
and Grant 2017AHB048. (Corresponding author: Jianfeng Yang.)

Y. Yu and J. Yang are with the School of Electronic Information,
Wuhan University, Wuhan 430072, China (e-mail: yyb@whu.edu.cn;
yjf@whu.edu.cn).

X. Li, X. Leng, and K. Bu are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
xing_li@zju.edu.cn; lengxue_2015@outlook.com; kaibu@zju.edu.cn).

L. Song and Y. Chen are with the Department of Electrical Engineering
and Computer Science, Northwestern University, Evanston, IL 60208 USA
(e-mail: libinsong2020@u.northwestern.edu; ychen@northwestern.edu).

L. Zhang, K. Cheng, and X. Xiao are with the Nanjing Research
and Development Center, Huawei Technologies Company Ltd., Nanjing
210012, China (e-mail: zhangliang1@huawei.com; chengkang@huawei.com;
xinxiao@huawei.com).

Digital Object Identifier 10.1109/COMST.2018.2868922

Index Terms—Software-defined networking (SDN), SDN reli-
ability, SDN faults, fault classification, system monitoring, fault
diagnosis, fault recovery and repair, fault tolerance.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) is an emerg-
ing network paradigm that promises to simplify network

management and enable innovations in networking [1]–[3].
In SDN, the traditional network architecture is split into a
programmable data plane and a logically centralized control
plane, rather than the two being integrated in the same con-
figurable black box [4]–[6]. The split architecture places most
of the network control logic (specified by software program-
ming) into the control plane and simplifies the data plane,
which merely acts on forwarding decisions installed by the
control plane [4], [5]. SDN reduces the complexity of net-
work management and provides powerful programmability for
networking. A network implemented with SDN can quickly
evolve to satisfy network users’ rapidly changing demands for
network resources, e.g., in cloud computing [7], network func-
tion virtualization (NFV) [8] and Internet of Things (IoT) [9]
scenarios. The network innovations it provides position SDN
as the future of networking.

SDN mainly originated from the OpenFlow project cre-
ated by McKeown et al. [6]. Until now, SDN has undergone
constant development and has been the subject of significant
attention and active exploration in academia and industry. In
addition to being the focus of a large number of research
publications [1]–[3], SDN has also achieved many success-
ful deployment stories presented by IT corporations, such
as the Google B4 project [10], Microsoft Ananta [11], and
NTT Cloud gateway [12]. Currently, the development of
SDN is being strongly promoted by various organizations
(e.g., industries, enterprises, data center vendors, governments
and academic institutions) [13], and SDN-based solutions
are also advancing the development of many other emerg-
ing network technologies (e.g., NFV, IoT, cloud, and 5G
technologies) [1], [7]–[9]. SDN is therefore highly promis-
ing for modern network management. However, regarding the
adoption of SDN techniques, one area that continues to cause
concern for network operators and users is the reliability of
SDN [1], [6], [13].

Reliability refers to the probability of failure-free operation
over a specified period of time under stated conditions [14].

1553-877X c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0257-5081
https://orcid.org/0000-0003-1188-801X

350 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Reliability is a critical ingredient of all designs created in all
industries, and SDN is no exception. Certainly, the central-
ized nature of networking in SDN offers clear advantages in
terms of reliability. For instance, because of the global network
visibility, the control plane can easily compose different net-
work policies and materialize them on the data plane without
conflicts. However, several new features in the SDN archi-
tecture also raise doubts about its reliability. Such features
include the control/data plane separation architecture, which
can increase network processing latency and lead to cross-layer
network faults [15]; the software-based management approach,
which can introduce various software bugs/defects into net-
works [16], [17]; and the limited network processing capability
of SDN controllers, which can affect the reliability of network
control for networks of diverse sizes [17]. These features all
have the potential to cause faults in SDN that exhibit various
symptoms and have complex root causes, thus making them
more complex and difficult to avoid and diagnose. For exam-
ple, state inconsistency between the control and data planes is
a common type of fault in SDN and can induce various types
of network failures, e.g., forwarding loops and blackholes;
moreover, a fault of this type has several possible root causes,
including vendor-specific optimization of switches [15], [18],
software bugs in the control plane [16], [17], or conflicts
among different policies [19], [20]. Thus, the ability to resolve
faults to achieve high reliability remains a key concern when
implementing SDN.

To control the effects of these faults, several tech-
niques are used [21], [22], such as system state monitoring,
fault detection, localization and resolution, and fault toler-
ance mechanisms. These techniques are collectively referred
to as fault management techniques [21]. In the domain
of SDN, multiple recent investigations have been con-
ducted on fault management solutions, including software
fault troubleshooting [16], [17], [23], policy conflict arbitra-
tion [24]–[26], forwarding path verification [19], [20], [27],
network behavior inspection [15], [28], network measure-
ment [29], [30], as well as fault recovery and tolerance
design [31], [32]. These studies have greatly contributed to
improving the reliability of SDN. However, we find that most
such studies resolve SDN faults from only a partial perspec-
tive, not a global one; this may result in incomplete and flawed
solutions and may even induce other side effects. More seri-
ously, as the network paradigm evolves, more potential faults
are being exposed. Thus, it is necessary to conduct a com-
prehensive and systematic survey of SDN faults and related
management solutions, accompanied by an in-depth discus-
sion and analysis, to provide researchers and engineers with
a foundation for motivating continual improvements in SDN
fault management.

However, to the best of our knowledge, such compre-
hensive survey of SDN fault management has yet been
performed [1]–[3], [33]–[38]. Some previous surveys have
been conducted from the overall perspective of SDN develop-
ment [1]–[3], some have focused on issues in the SDN security
domain [33]–[35], [39], and some have focused on SDN net-
work measurement [36] and SDN fault tolerance [37]. SDN
faults and management solutions have been discussed only to

a lesser extent, without detailed discussions or analysis. This
situation motivates us to systematically summarize and eval-
uate existing solutions for SDN fault management to achieve
such a fundamental and comprehensive survey.

The main objective of this paper is to survey the aca-
demic publications and industrial projects related to SDN fault
management over the period of 2008–2017 and to present a
systematic discussion and analysis of SDN faults and man-
agement solutions. The main contributions of this paper are
as follows:

• State of SDN: We characterize the current overall state
of SDN development to help new researchers and net-
work operators understand SDN and the related reliability
issues (Section II-C).

• Taxonomic Framework: We design a two-dimensional
taxonomic framework to provide an overview of SDN
faults and related management solutions (Section II-E).

• Fault Classification: Through a bottom-up analysis of the
SDN architecture (Section II-B), we develop a systematic
classification of faults in SDN networks and analyze their
symptoms and root causes (Section III).

• Evaluation and Analysis of Existing SDN Fault
Management Solutions: We present an in-depth analysis
of SDN fault management with respect to system mon-
itoring (Section IV), fault diagnosis (Section V), fault
recovery and repair (Section VI) and fault tolerance
(Section VII) by classifying, comparing and analyzing
existing solutions.

• Gap Analysis Between Academia and Industry:
Considering the gap between academic research
and industrial engineering, we also highlight fault
management projects implemented in mainstream SDN-
related ecosystems and identify the major barriers to
developing powerful fault management tools for practical
SDN network management (Section VIII).

• Future Research Opportunities: Finally, we present a
discussion of potential research directions related to
SDN fault management, including current challenges and
emerging trends (Section X).

II. BACKGROUND

In this section, we present the background on SDN, focusing
on its differences from traditional networks, relevant terminol-
ogy, and the current state of development. The fundamentals
of SDN fault management and a two-dimensional taxonomic
framework for classifying SDN faults and related management
solutions are also presented.

A. Traditional and SDN Networks

As shown in Fig. 1 (a), a traditional network consists of vari-
ous configurable network devices and is commonly operated in
a distributed manner. Each of these devices is an autonomous
system that can build its own forwarding information bases
(FIBs) and network topology by exchanging network infor-
mation with its neighbors and can then decide how to forward
packets based on its FIBs. In these network devices, the con-
trol logic is tightly coupled with forwarding functions, and this

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 351

Fig. 1. Architectures of a traditional network and an SDN network.

tight coupling, however, leads to a variety of problems with
regard to, e.g., the compatibility and extension of network pro-
tocols, switch software updates, network device maintenance,
and network innovations.

In SDN (see Fig. 1 (b)), the network architecture is modified
by clearly separating the network into three network planes
(i.e., the application plane, control plane, and data plane) con-
nected by two internal interfaces (i.e., the northbound interface
and southbound interface). The application plane allows net-
work operators to specify their desired network control logic
through the northbound interface. The control plane is the
core of an SDN network. It abstracts the network state and
resource information to simplify the network reasoning for
decision making in the application plane; meanwhile, it also
translates the control logic into low-level flow instructions and
installs them into the data plane through the southbound inter-
face (as defined by SDN protocols, e.g., OpenFlow [40] and
ForCES [41]) to control traffic forwarding. The data plane
then simply forwards packets according to the installed flow
instructions. These features of SDN offer a promising means
of addressing the problems in the traditional network architec-
ture and have driven SDN to gain significant traction in both
academia and industry.

B. SDN Terminology

To further introduce SDN, we now discuss the major
elements of the SDN architecture. Currently, several stan-
dard organizations (e.g., the Open Networking Foundation
(ONF),1 the Internet Engineering Task Force (IETF) [41] and
the Internet Research Task Force (IRTF) [5]) and industrial
and community consortia (e.g., OpenDaylight)2 and ONOS3

all conduct standardization activities for SDN. In this sub-
section, we present the essential SDN terminology used
throughout this paper, as collected from documents regard-
ing these standardization activities and academic literature

1ONF - https://www.opennetworking.org/.
2OpenDaylight - https://www.opendaylight.org/.
3ONOS - https://onosproject.org/.

surveys [1]–[3], [33], [34]. We provide a list of abbreviations
in Table I. The detailed descriptions of the relevant terminol-
ogy are as follows:

• Network Device: A network device can be either physi-
cal or virtual and performs a set of network operations
relevant to packet forwarding. It can be implemented in
common hardware (e.g., NetFPGA and Pica8 3920) with
a compliant operating system or in software (e.g., Open
vSwitch) on common servers.

• Data Agent: A network device contains one or more
data agents, as defined by SDN southbound protocols
(e.g., OpenFlow, ForCES or Programming Protocol-
Independent Packet Processors (P4) [42]), for forwarding
packets and interacting with SDN controllers; examples
of such data agents include OpenFlow agents and ForCES
Forwarding Elements.

• Data Plane (DP): The DP is the bottom layer of an SDN
network and is the collection of network devices.

• Southbound Interface (SBI): Located between the con-
trol plane and the DP, the SBI is responsible for all
interactions between these two planes, e.g., configura-
tion issuing, event notification, and device performance
querying. These interactions are often defined by SDN
southbound protocols.

• Controller: A controller is a software entity for network
control. In addition to providing core management func-
tions, e.g., topology discovery, device management, and
state synchronization, it also enables the installation of
external programs (i.e., applications) through northbound
APIs or controller APIs (i.e., controller function inter-
faces) [43], allowing them to deploy their control logic
into the underlying networks.

• Control Plane (CP): As the middle layer, the CP is the
collection of all controllers and acts as a network oper-
ating system. The CP is logically centralized, but it can
be implemented either in a physically distributed manner
or in a cluster to manage all network devices in the DP.

• Eastbound/Westbound Interface (EBI/WBI): Since the
CP is often physically distributed, it is necessary

352 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE I
ABBREVIATION

to implement EBIs and WBIs (e.g., SDNi [44]) to
enable interactions among the distributed controllers (e.g.,
state synchronization, control coordination and topology
exchange).

• Northbound Interface (NBI): The NBI is the communica-
tion interface between the application plane and the CP.
It is responsible for providing upper-level SDN applica-
tions with an abstract view of the underlying network
and interfaces for accessing network resources. Unlike in
the case of the SBI, currently, the controllers often use
a common interface (e.g., REST API, Onix API or Java
API) to implement the NBI.

• Application Plane (AP): The AP is the top layer and
includes various applications and external affairs (e.g.,
high-level orchestration systems). Network users can
interact with this plane to control and manage the entire
network through a variety of applications.

• Application (App): In the context of SDN, apps are the
software programs that define the network control logic.
Apps can be implemented in the AP (accessing the net-
work through the NBI) or CP (accessing the network
through controller APIs). Apps that are implemented in
controllers are more commonly called control programs
or application modules [23], [45], [46] ; examples include
the application agents in SDN controllers defined by
ONF [4] and the plugins in OpenDaylight. Some of them
can provide northbound APIs for external apps. In this
paper, we do not draw explicit distinctions among the
terms “application”, “control program” and “application
module”; instead, we consider them interchangeably to
help us focus on the faults induced by design flaws and
coding mistakes.

C. State of SDN Development

In this subsection, we characterize the state of SDN devel-
opment, including open networking ecosystems, network pro-
grammability, southbound protocols, and network complexity,
to help readers understand the reliability issues facing SDN.

1) Open Networking Ecosystems: In the traditional net-
working world, each network company (e.g., Cisco, Brocade
and Huawei) typically dominated its own network ecosys-
tem, with these ecosystems being either closed or semi-closed
and interoperable with others only through IEEE or IETF
standards. These closed ecosystems hinder the rapid devel-
opment of network technologies. By contrast, one of the main
promises of the SDN era is to provide an open networking
ecosystem, which can offer various benefits, e.g., deep net-
work service sharing, cross-product integration, multi-vendor

interoperability among products and support for open-source
software. For example, SDN app stores4 have emerged to
provide a centralized SDN app management platform for facil-
itating new app submission and app acquistion. The implemen-
tation of open networking ecosystems can reduce networking
market monopolies and promote the rapid development of
network technologies.

2) Network Programmability: One of the advantages of
SDN is network programmability, whereby an SDN con-
troller can provide NBIs to allow SDN apps to access net-
work resources and control network behaviors based on their
own needs through underlying programmable protocols (e.g.,
OpenFlow). Through these programmable interfaces, each net-
work operator can write his own programs to inject his desired
network policies into the network. Thus, SDN apps act as
the “network brains” for various network services, e.g., traffic
engineering, mobility, measurement, data center networking,
and security [1].

Although network programmability can simplify network
management, verifying the correctness of SDN apps is dif-
ficult since they often co-occur with complex and varying
network states [23], [46]. Additionally, northbound APIs are
often defined at the abstraction of the network provided by the
southbound protocols that enable this programmability, such
as OpenFlow, which operates at a very low level. Thus, apps
must perform reasoning on network states based on numer-
ous flow rules to solve problems. To reduce the complexity of
network programming, many solutions currently proceed from
low-level flow languages to high-level abstract languages [47],
such as Frenetic [24], Pyretic [48] and PGA [49]. These high-
level programming languages can simplify and even remove
numerous processes in flow rule orchestration (e.g., through
the elimination of overlapping rules and priority ordering)
and thus provide a high-level and efficient abstraction layer
for apps. This advancement in network programmability has
further enhanced the development of SDN.

3) Southbound Protocol: SDN is often linked to the
OpenFlow protocol, which emerged from an academic exper-
iment in 2008 [6]. Over the past few years, OpenFlow has
become the predominant SDN southbound protocol and has
directly affected the development and implementation of the
SDN architecture. An OpenFlow switch contains an OpenFlow
agent and a datapath built on common hardware [40]. The
OpenFlow agent is responsible for all operations involv-
ing OpenFlow messages, such as generating and sending
Packet_In messages for newly arriving packets, receiving and
installing OpenFlow rules from the controller, and generat-
ing barrier messages for rule5 installation. The datapath is a
pipeline of the flow tables, the group table and the forwarding
ports, with which the switch can perform match-action pro-
cessing for incoming packets. The proposal of OpenFlow has
resulted in simpler and more open switches and has enabled
network operators to dive deeper into traffic forwarding since

4Examples include the CoreStack SDN App Store
(https://www.cloudenablers.com/corestack-sdn-app-store.php) and HPE
SDN App Store (https://marketplace.saas.hpe.com/sdn).

5We use the term “rule” to refer to an OpenFlow flow rule which is also
called an OpenFlow flow entry.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 353

they can send flow-level instructions to switches for packet
manipulation.

In addition to OpenFlow, ForCES is another protocol that
has been attracting significant attention [50]. Its goal is also
the separation of the CP and DP; in ForCES, this goal is
achieved through the definition of a set of protocols (e.g., rout-
ing protocols and signaling protocols) and a model [51] that
is necessary to separate these planes. The model is a model-
ing language (ForCES model) that allows developers to define
their own abstraction models to control traffic activities in
the DP [50]. Moreover, CP/DP separation is also achieved in
many other protocols, such as OVSDB [52], NETCONF [53],
and Protocol-Oblivious Forwarding (POF) [54]. These pro-
tocols also provide flexible APIs for the control of packet
forwarding or configurations (we refer the reader to [1] for
detailed discussions). However, although these southbound
SDN protocols are powerful and vendor agnostic for network
programmability, they provide open programmability only in
the CP; the packet parsing and header field matching in the
DP still depend on specific network protocols, e.g., VLAN
and NvGRE [42]. This is also why these specifications need
to ensure passive evolution to support more network require-
ments; however, this capability often suffers from a tedious
development cycle for updating switch software and handling
backward compatibility issues [42], [55], [56].

Fortunately, some efforts have been made to address this
issue, in protocols such as POF and P4. POF was proposed
to enable a protocol-obvious SBI that can remove any proto-
col dependency using a low-level forwarding instruction set
(FIS). By defining instructions in the FIS, POF simplifies the
process of packet header parsing to a controller task. P4 is
similar to POF and has the same goal of extending SDN
programmability. P4 is a high-level language for configuring
switches and enables network operators to specify both packet
parsing and processing in the DP. These protocols further
improve the programmability of SDN for both forwarding
logic and packet parsing and reduce the complexity of switch
development.

4) Network Control Capability: The DP provided by cur-
rent SDN southbound protocols is powerful enough to satisfy
various layer 2/3 (L2/L3) network demands. However, in mod-
ern networks [39], [57], many more complex middleboxes or
network functions (NFs) (e.g., load balancing, deep packet
inspection, and firewalls) are combined with L2/L3 forwarding
devices (e.g., switches and routers) to offer highly specialized
network services and more powerful networking capabilities.
The packet processing in many NFs is often stateful (also
called context-dependent) in nature and is based on histori-
cal packet information [39], e.g., packet connection contexts,
local link states, and port traffic loads.

Unfortunately, due to the switch-to-controller signaling load
and processing latency induced by the split architecture and
centralized control, the SDN paradigm faces difficulties in
managing such stateful networks [58]. In addition, flow-rule-
based network control can only deal with basic L2/L3 NFs,
which may cause SDN to be able to obtain only limited
visibility of the entire network [58]. Recently, many solu-
tions [58]–[62] have been proposed to overcome this issue.

These solutions extend the DP implementations to offload
some stateful traffic processing and control tasks to be han-
dled directly within switches, such as by adding a state table
for stateful traffic processing [58]–[60] or modifying the NFs
to insert tagging policies for steering traffic via flow rules
in switches [61], [62]. Nevertheless, to satisfy additional net-
work demands, the further extension of the network control
capability of SDN still requires greater attention.

D. Fundamentals of SDN Fault Management

In this subsection, we describe the fundamentals of SDN
fault management. For a network, a failure is the inability of
the network or some component thereof to perform required
functions; an error is a mistake made based on human actions
or other factors that produces an erroneous result; and a fault,
or more commonly a “bug”, is a manifestation of an error in
the form of an incorrect condition or defect that can cause the
network to behave in an unintended manner. Thus, the result of
an error is a fault, and a fault can lead to a failure. For example,
a network operator may modify the OpenFlow rules in some
OpenFlow switches without notifying the controller, which can
lead to an inconsistent rule state between these switches and
the controller. This fault may then lead to a network failure
(e.g., a forwarding loop) as the network updates.

The occurrence of faults, errors, and failures is the most
common and direct avenue through which the reliability of
SDN is undermined. Fault management is the process of
detecting, localizing, resolving and preventing faults [21], [22].
Thus, the design of suitable fault management solutions is
indispensable for achieving reliable SDN deployment. Based
on the taxonomy of fault management techniques for dis-
tributed systems [21], we divide the SDN fault management
process into four tasks, each of which makes distinct contri-
butions to SDN reliability. Our survey is conducted based on
the following four tasks:

• System Monitoring: to monitor and trace system behav-
iors and collect statistical data with different granularities
according to specified monitoring metrics;

• Fault Diagnosis: to detect possible faults and localize
their root causes from collected data;

• Fault Recovery and Repair: to reconfigure or reconstruct
a system or its components after faults have occurred;

• Fault Tolerance: to prevent faults that have occurred
in some components from affecting other compo-
nents or the entire system or to reduce the dam-
age they cause such that proper operation will
continue.

E. Taxonomic Framework

For clarity in presenting our fault management survey, we
define a two-dimensional taxonomic framework (shown in
Fig. 2) as an overview of the survey structure. This framework
is specifically designed for categorizing SDN faults and related
fault management solutions. We list the fault classification and
the four fault management tasks in the horizontal dimension,
and we group corresponding solutions to these four tasks into
subtasks in the vertical dimension according to their basic

354 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 2. A two-dimensional taxonomy of SDN fault management solutions in the academic literature. These solutions are classified into four tasks (i.e.,
system measurement, fault diagnosis, fault recovery and fault tolerance), which are presented along with the fault classification on the horizontal axis, and a
bottom-up approach for discussing each task for SDN fault management is represented on the vertical axis. Note that the structure of our paper is based on
this taxonomy.

TABLE II
SDN FAULT CLASSIFICATION

methodology. Note that in the vertical dimension, we do not
follow the order of the layers in the SDN architecture, namely,
the DP, CP and AP; we prefer to classify faults and their fault
management techniques at the DP, CP and app levels. This is
because the app level represents both apps in the AP and con-
trol programs in the CP, which can help us to distinguish faults
due to coding mistakes in apps from those due to system flaws
in the CP and thus to describe SDN reliability issues more
clearly.

III. FAULT ANALYSIS AND CLASSIFICATION

Given the background on SDN and fault management, we
now discuss the main faults in the SDN stack, which mani-
fest with different symptoms and have different root causes.
In Table II, we summarize all analyzed faults in SDN with
a bottom-up classification, since abnormal network behaviors
commonly occur in the DP, and we present concise descrip-
tions of these faults along with their symptoms and root
causes.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 355

TABLE III
NETWORK FAILURES

A. Data Plane Faults

As discussed in Section II-A, SDN southbound protocols
can provide a simple network device with a data agent and a
datapath for processing and forwarding packets, such as the
OpenFlow agent and match-action pipeline in an OpenFlow
switch. Faults in these two components or in the device hard-
ware can potentially induce abnormal network behaviors, i.e.,
network failures. These network failures are deviations from
typical network properties and are common and frequent in
computing networks. According to their characteristics with
respect to packet processing, they can be divided into three cat-
egories: forwarding issues, transformation issues and dynamic
issues. Forwarding issues are abnormal behaviors in packet
forwarding, such as reachability failure, forwarding loops,
waypoint routing, host isolation, blackholes, and long path
lengths. Transformation issues involve incorrect packet trans-
formation, such as incorrect packet header modification, packet
encapsulation or de-encapsulation errors, and incorrect packet
replication. Dynamic issues are abnormal behaviors that occur
dynamically or randomly, such as unexpected packet loss, link
congestion, link latency, load imbalance, and intermittent con-
nectivity. We summarize all these network failures in Table III.
In this subsection, we discuss three main types of faults in the
DP, all of which can induce such network failures.

1) Network Misconfiguration: The main cause of net-
work property deviations is incorrect network configurations,
i.e., network misconfiguration. Network misconfiguration can
induce various unexpected network states such as reachability
failures and forwarding loops [19], [20]. These configuration
issues are the most common problems in computing networks,
but they are thorny to resolve because there may be a large

number of configuration files to check. SDN decouples the
CP and DP and uses a centralized controller to configure
the DP. Although this split architecture can simplify network
configuration, it also makes configuration issues more com-
plex since their root causes may be cross-layer in nature.
For example, a missing rule may be caused by policy con-
flicts in the CP [25], [69], software defects in switches [15],
[70], attacks [71], [72], or even careless external rule modifi-
cation [73]. Thus, we need to consider these challenges and
resolve such faults through more cross-layer analysis. Note
that the details of issues concerning the CP that can induce net-
work misconfiguration are discussed in Section III-B, whereas
other faults in the DP are discussed below.

2) Inconsistent Rule Installation: At first glance, the causes
of network failures appear to be network misconfigura-
tion. However, even when the configurations generated by
the CP are correct, the actual networks implemented by
flow rules in the DP may still violate network operators’
requirements [18], [28], [70]. We call this issue of inconsis-
tent rules in the DP inconsistent rule installation, which means
that the actual rules installed in a switch are not consistent with
the designated configurations generated by the controllers.
Inconsistent installed rules may not necessarily lead to network
failures; rather, they can directly cause undesirable forwarding
behaviors and undermine the controller’s network visibility in
the DP, which can then lead to incorrect policy actions. More
seriously, configuration correctness checks relying on the CP
view [19], [20] may lose their effectiveness.

For clarity, we classify inconsistent rule installation faults
into two types: rule loss and rule reordering [18], [28], [70].
Rule loss refers to a fault whereby some flow entries in flow

356 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

tables are lost without the controllers being notified [18], [28].
Rule reordering occurs when the actual order of the
flow entries in the flow table does not follow the desig-
nated order and the priorities of some rules overlap with
others [18], [70], [73]. The root causes of this type of fault
vary from faulty internal software implementations in the
switch to external misoperation. We summarize as follows:

• Inconsistent data agents: The implementations of SDN
southbound protocols in different switches may be incon-
sistent with each other and thus may deal with config-
uration messages generated by controllers in different
ways [18]. For example, the given order of the rules gen-
erated by a controller may be arbitrarily reordered in a
switch to maximize its performance [18], [74].

• Functional defects: As a software entity, a data agent
will inevitable be wrong at times. For example, software
defects in an OpenFlow agent can directly impact rule
installation, causing rules to be dropped or even modi-
fied [28]. Note that in addition to the ability of functional
defects to impact rule installation, more issues concerning
data agents will be identified in Section III-A3.

• Hardware faults: This is a typical and intractable problem
in network hardware infrastructures. Hardware faults can
be divided into soft errors (e.g., a bit flip in memory) and
hard errors (e.g., a bit that is always bad). Whereas soft
errors are temporary and can be eliminated or repaired
by rewriting, hard errors are permanent and cannot be
repaired. Soft errors can lead to rule installation fail-
ures and rule tampering at run time [15]. Hard errors in
memory can also lead to rule loss and even some feature
crashes. This means that some hardware components or
all of the hardware may need to be replaced.

• External operations: The forwarding tables in a switch
can be modified not only by SDN controllers but also
by external operations (e.g., attacks or manual config-
uration activities) that may not be noticed by the con-
troller [72], [73]. By hijacking the controller or accessing
the control channel, an attacker can insert or modify flow
rules to redirect traffic elsewhere [33], [34], [71], [72]. In
addition, manual rule modification by means of the con-
figuration tools in switches (e.g., ovs-ofctl in Open
vSwitch) can also potentially induce rule inconsistencies
since it is necessary to carefully inspect the existing rules
to avoid unexpected overriding any of them [73].

To solve rule inconsistency issues, one feasible approach
is to design positive acknowledgments for per-rule instal-
lation. Unfortunately, the OpenFlow specification does not
provide such a mechanism since doing so would increase
its complexity [40], [75]. However, OpenFlow does provide
barrier messages for the controller that serve similar func-
tions, e.g., ensuring message ordering and notification of
completed operations [40]. When a switch receives a bar-
rier message, it must finish executing all previously received
commands. This is a high-level negative acknowledgment
mechanism and thus is inefficient and error-prone for veri-
fying the success of rule installation. Since OpenFlow does
not provide lost-message detection and recovery mecha-
nisms [40], any lost barrier reply message may lead to failures

in control-data state consistency [75]. More seriously, as dis-
cussed in [18], [76], and [77], these barriers may not always
be implemented in switches since the delay imposed by con-
firming rule installation may cause prolonged packet loss. It is
safe to conclude that the occurrence of inconsistent rule instal-
lation in the DP is quite possible, and therefore, we must pay
greater attention to this issue.

3) Functional Defects: When implementing network
devices, device manufacturers often follow standard network
protocols or specific network requirements to develop their
software, i.e., data agents. Software-based data agents may
contain defects that can cause various network failures such
as violations of protocol compliance and missing features. We
refer to a fault of this type in the DP as a functional defect
in this paper. We use an OpenFlow agent as an example to
discuss such faults, considering two root causes, and we then
extend the discussion to the more complex DP.

The first cause of functional defects is incorrectness and
incompleteness of the OpenFlow specification implementation.
Defects in OpenFlow agents are inevitable and can affect nor-
mal network operations following the OpenFlow specification.
This issue will be aggravated as OpenFlow evolves since many
new features will need to be implemented in agents to support
more network management functions. As tested in [55], sev-
eral defects have been found in OpenFlow agents; such defects
include incorrect message dropping, missing features, missing
error messages, OpenFlow agent termination with an error,
different orders of message validation, and statistic requests
silently being ignored. These defects can directly cause incon-
sistent rule installation by blocking the installation of a rule or
arbitrarily changing some fields in a rule or the order of rules.
In addition, they may break the correctness of the operational
state between the CP and DP by causing barrier messages to
be dropped or incorrect barrier messages to be sent to the
controller due to incorrect barrier implementation [55], which
can, in turn, induce incorrect policy actions and exacerbate
inconsistent rule installation.

The other cause is the poor compatibility and interoper-
ability among different OpenFlow switches. Currently, the
OpenFlow specification has evolved to version 1.5.1, which
can support more functions than previous versions could [40].
Specification version growth is generally beneficial; however,
the long debugging cycle for switch software updates makes it
difficult for switches to keep up with the pace of specification
growth. Switch manufacturers need to invest more manpower
and material resources in upgrading to new OpenFlow ver-
sions, and they may experience an imbalance between costs
and benefits. Currently, most switches only support OpenFlow
1.0 or 1.3 and few can support more versions [78]. The result-
ing problem of poor compatibility and interoperability not
only limits the features of networks built on the basis of
these switches but also makes these switches unable to work
together, in contrast to the original goal of OpenFlow [6].
The need for different switches to be able to work together
is a serious concern. For example, in a data center or cloud
environment, hardware switches are responsible for host inter-
connections, and software switches are responsible for the
intraconnections among the virtual machines in a host or

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 357

between hosts in overlay networks. In [18], three commercial
OpenFlow switches (5406zl, P-3290 and 8132F) were tested
and found to exhibit different characteristics with respect to
rule modification, rule reordering for updates, and the time
of synchronization with the CP. The poor compatibility and
interoperability of OpenFlow switches make them difficult to
manage and can cause further issues such as rule loss and
rule reordering. This issue also is one of the reasons why
OpenFlow-based SDN has not achieved fast adoption.

These above-mentioned issues concern forwarding rules.
However, for complex NFs or software-defined DPs (e.g., P4,
POF or Click [79]), the issues may be different in nature,
and analyzing forwarding rules to check the network behavior
may be inefficient. On the one hand, many NFs are stateful
and depend on the flow history for their processing of network
traffic. Although many approaches have attempted to add SDN
dimensions for the steering of flows in NFs [62], [80]–[82],
current SDN technology does not offer a sufficient con-
trol capacity for NFs. To find the root causes of network
failures, we may need to analyze the actual implementa-
tions in the source codes of these NFs. On the other hand,
many new software-defined specifications can provide greater
programmability for new DPs. With these specifications, a net-
work operator can design a custom DP in a flexible manner
and implement specific functions for satisfying any network
demand. These specifications are powerful but cause faults that
occur in the DP to be more complex. Logic errors or design
flaws in DP programs may result in network failures, and thus,
such programs also require careful inspection.

B. Control Plane Faults

The SDN controller is a software entity that is not bug-free.
Software errors in the CP can lead to a controller behav-
ing abnormally or even crashing, and they can also induce
network problems in the DP [16], [83]. In addition, flaws
in critical design and logic in SDN controllers can degrade
SDN reliability [84]. When efforts are made to satisfy the
requirements related to the management of highly dynamic
and flexible networks, the incidence of flaws in controller
software may increase because the needs of large-scale com-
plex software programs are driving those networks. Insufficient
domain knowledge, incorrect evaluations of service require-
ments and network capabilities, poor assumptions about the
network environment and unexpected concurrency issues [84]
all make faults in the CP inevitable. Since the CP is the core
of an SDN network, the effects of CP faults are felt throughout
the network.

CP faults can not only affect the reliability of the CP
itself but also harm the whole network. In this survey, we
categorize faults in the CP into four types: policy violation
(Section III-B1), state mistranslation (Section III-B2), incon-
sistent controller states (Section III-B4), and incorrect event
processing (Section III-B3).

1) Policy Violation: As discussed in Section III-A, although
some issues in the DP can induce incorrect network configu-
rations, their main causes, such as incorrect network policies
and policy mistranslations, originate from the CP. This is an

extremely common issue in SDN networks, and a number
of studies on fault diagnosis (e.g., [16], [19], and [20]) and
recovery (e.g., [85]–[87]) have resulted in the design of vari-
ous policy verification mechanisms to address this issue. In
these works, a list of fundamental network-wide invariants
is commonly considered in combination with network oper-
ators’ desired properties as the basis on which to verify the
correctness of the generated configurations. An invariant rep-
resents a basic correct network state (e.g., reachability or being
loop-free), and a violation of an invariant can directly induce
abnormal network states. Thus, we call this type of fault in
the CP, in which the configurations generated by the controller
violate the operators’ designated network policies, a policy
violation.

We surveyed several academic publica-
tions [16], [23], [83], [88]–[92], based on which we can
summarize the root causes of policy violations as follows:

• Policy flaws: Logic errors or human mistakes in policy
writing can directly violate desired properties and result
in network failures [23], [88], as will be described in the
next Section III-C.

• Policy conflicts: A policy conflict is a situation in which
two network policies have overlapping domains for net-
work manipulation [89], [90]. This is a common issue in
the CP since SDN allows apps from different vendors to
coexist in the same CP for network management; it is
difficult to ensure that there are no conflicts among their
policies, and this can lead to race conditions, e.g., compe-
tition for shared network resources (e.g., link bandwidth,
topology or switch CPUs) [25], [69] and rule priority
overlap [25], [69], [93]. In OpenFlow networks, this issue
manifests as flow rule conflicts, in which two flow rules
can match the same flow but may dictate different actions.
The OpenFlow specification defines a priority to dis-
tinguish these rules such that packets can be matched
only by the rule of higher priority. However, when net-
work operators want to deploy new policies into networks
without impacting existing network services, if a newly
generated rule is assigned a higher priority than an exist-
ing rule due to insufficient or incorrect domain knowledge
on existing network policies or incorrect assumptions on
the operating environment, this can cause a rule to over-
lap with existing network services. In turn, this can result
in a network state that is inconsistent with the operators’
intentions [89], [90].

• Policy mistranslations: After being generated by apps,
policies are translated by a controller into low-level
instructions for installation in the DP. Errors in this trans-
lation process can lead to the generation of unexpected
rules, which may also be inconsistent with the opera-
tors’ desired properties [91], [92]. This problem is further
analyzed in Section III-B2.

• Incorrect event processing: Bugs in CP components (e.g.,
OpenFlow packet handler [16], [17], [83] and link dis-
covery [16]) can cause incoming events/messages from
apps to be processed incorrectly; this may result in incor-
rect decisions regarding network updates. We discuss this
issue in detail in Section III-B3.

358 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

2) Information Mistranslation: Controllers are responsible
for providing abstractions of the network state to upper-layer
apps and translating policies from apps into low-level instruc-
tions for the DP. We use the term “information mistranslation”
to refer to a fault in which states or policies are mistranslated.
These faults are caused by errors (e.g., logic flaws, coding mis-
takes and software misconfiguration) in state abstraction and
policy translation. Such a fault may have a very small impact
on the common control logic implemented based on the low-
level abstraction (e.g., OpenFlow) of the DP. However, for
high-level programming languages [24], [48], [94], [95] that
aim to simplify network programming in SDN, their suscepti-
bility to such faults is one of the main hindrances to their
success. These programming languages constitute the main
paradigm for SDN app development and enable network oper-
ators to focus on which networks they want to implement
without needing to consider how to implement them [24], [47].
For apps written in high-level programming languages, a com-
piler, or more precisely a language interpreter is applied to
translate the “what” (i.e., the high-level properties defined in
the apps) into the “how” (i.e., low-level flow rules or other
configuration commands) based on the network abstraction.
This, however, is also not a bug-free process and can lead
to mistranslations of information (i.e., policies and network
states) for the DP and AP as well as inconsistent states and
network failures. Verifying the correctness of the process of
state translation in the CP is necessary to ensure cross-layer
state consistency in SDN.

3) Incorrect Event Processing: In the SDN paradigm, each
component (e.g., switches, controllers and apps) leverages
request and response events to maintain contact with the other
planes. The CP can receive external events from switches and
apps as well as internal events (e.g., master election, dis-
tributed database reading/writing or component collaboration)
among controllers, and it will follow its inherent logic to pro-
cess each received event and generate responses to be sent
to the originating component or forwarded to others. Design
and logic flaws or software bugs in controller subcomponents
can directly result in the generation of abnormal actions or
responses, delays in the responses to other events or even
dropped events [16], [17]. We refer to such faults as incorrect
event processing.

To describe this type of fault more intuitively, we present
an example of a bug in POX found in [16]. In POX’s dis-
covery module, there is a logic error for Packet_In handling
that can lead to a race condition in which a LinkEvent event
is first sent to apps rather than to SwitchUp when a pre-
mature Packet_In is forwarded to POX. Bugs in the CP are
very common and varied; for example, each component of the
OpenDaylight controller contains many bugs,6 and numerous
new bugs continue to emerge as the controller evolves. The
occurrence of such a fault in a network can lead to many
issues such as abnormal network behaviors, missing controller
features, incorrect actions in apps, invalid controller access,
and even crashes of a component or an entire controller. To

6For detailed descriptions, the reader is referred to the OpenDaylight
Bugzilla (https://bugs.opendaylight.org/).

guarantee SDN reliability, we need to design more effective
fault diagnosis techniques for finding faults in the CP and
fault tolerance techniques for preventing component failures
or system crashes.

4) Inconsistent Controller States: To achieve high avail-
ability and scalability, the SDN CP is currently designed to be
logically centralized but physically distributed. As a distributed
system, the CP needs complex software to ensure data shar-
ing, state synchronization, module collaboration, and access
management among different CP components. Although a dis-
tributed CP can be used in a large-scale network, errors in the
distributed control system can induce various failures (e.g.,
distributed database locking, master re-election or inconsis-
tent event actions), which can impact the network processing
performance of the CP [16], [17].

The root causes of inconsistent controller states are var-
ious and include logic and design flaws, coding mistakes,
concurrency errors, incorrect algorithms, unexpected opera-
tions, hardware failures, and connection interruptions. Note
that these issues arise in most distributed systems, including
SDN controllers, and are difficult to diagnose or prevent. To
resolve such issues, greater effort needs to be applied toward
optimizing and improving the distributed architecture.

C. Application Faults

SDN apps constitute the main “brains” of networks. Each
app implements its own control logic to manipulate net-
works by means of either general-purpose languages (e.g.,
Java, C++ or Python) or domain-specific programming lan-
guages (e.g., Frenetic [24], Pyretic [48], FlowLog [94] or
FatTire [95]). However, these apps all potentially contain soft-
ware faults that can affect the entire network, e.g., incomplete
specifications, incorrect algorithms, design mistakes, program-
ming bugs, coding mistakes, incorrect installations, and user
mistakes. We divide these faults in apps into two groups:
incorrect program implementations (Section III-C1), which
can result in network events being processed incorrectly, and
policy flaws (Section III-C2) (also called control logic flaws),
which can cause network states to violate operators’ desired
specifications.

1) Incorrect Program Implementations: We use the term
“incorrect program implementation” to refer to a fault that is
caused by software bugs or coding mistakes and can induce
unexpected behaviors during run time or when processing
network operations. Such faults are quite common in soft-
ware engineering [96] and may be more complex in SDN
since SDN programs often need to reason based on a massive
amount of network information to make forwarding decisions.
Any coding mistakes, concurrency errors, incorrect operations,
or incorrect installations can potentially induce abnormal app
behaviors or even network problems, such as the generation
of requests with incorrect parameters or the mishandling of
network events from the DP or NBI requests [16], [97], [98].
A simple example of an incorrect program implementation
is detailed as follows. To process a new OF Packet_In mes-
sage, three separate tasks need to be implemented: 1) caching
the message, 2) generating and sending Packet_Out messages

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 359

to other nodes to find the destination of the message, and
3) generating Flow_Mod messages to install flow rules in
related nodes for guiding traffic consisting of packets of this
type. If the programmer forgets about task 3), packets of this
type will never be forwarded. Because these programs are exe-
cuted under conditions of complex network states, diagnosing
faults becomes a thorny issue [23], [46].

2) Policy Flaws: Although programming apps with
domain-specific programming languages can reduce the occur-
rence of incorrect program implementations, insufficient net-
work knowledge or incorrect assumptions about the network
environment can also result in faulty policies. A fault of this
type is called a policy flaw in this survey. Policy flaws in
apps are the main cause of violations of operators’ desired
specifications or fundamental network properties, e.g., for-
warding loop-freedom, isolation among groups, and basic
reachability. Many research efforts [19], [20], [23], [46] have
focused on identifying these issues from flow rules generated
by the CP or from logic in the source codes of apps; some
tools [87], [99], [100] can automatically produce fault patches
to repair such flaws.

IV. SYSTEM MONITORING

Data are crucial in enabling network operators to promptly
find and comprehend problems that compromise SDN reli-
ability. In this section, we focus on system monitoring for
SDN networks, namely, the tracing of system behaviors and
the collection of data from various SDN components for
fault management. For traditional networks, many network
measurement tools, such as tools for instrumentation (e.g.,
syslog), traffic counting and sampling (e.g., NetFlow, sFlow
and SNMP), traffic mirroring (e.g., wireshark), probe test-
ing (e.g., ping and Iperf), and packet tracing (e.g., IP
traceroute), have been developed for monitoring net-
work states. Although SDN can provide more opportunities
for advancing these tools, it also poses challenges for sys-
tem monitoring because of the multiple software components
(e.g., data agents, controllers, and apps) and interaction chan-
nels involved in network operations. Several types of data
are involved in SDN system monitoring; in this section, we
divide these data into four types, namely, probe packets, traf-
fic statistics, channel messages and system events, and discuss
approaches for collecting these data. For clarity, Table IV
summarizes these four types of data and their corresponding
monitoring approaches, their functions and their advantages
and disadvantages for SDN fault management.

A. Probe Packets

As discussed in Section III, the actual behaviors of a net-
work can be inconsistent with the network configurations
generated by the CP due to rule loss or priority reordering.
Thus, the network snapshots built from control messages are
not fully credible [15]. To address this issue, multiple probe-
based techniques have been developed, in which specific probe
packets are injected into the DP and the probe results are
collected for further forwarding inspection. The approaches
used for the generation and collection of the probe packets in

such monitoring mechanisms can be divided into two types:
test host-based and caching rule-based approaches. A more
detailed discussion of the usage of these probe packets can be
found in Section V-A.

In the test host-based approach, test hosts with testing
agents are deployed around switches, and these test hosts are
responsible for generating probe packets based on specific
testing strategies, collecting the probe results, and then send-
ing these results to the controllers or to a dedicated analysis
server [28], [101], [102]. This approach allows packet probing
to be performed with minimal interference with normal net-
work operations; however, it requires additional devices and
is infeasible for large-scale networks.

Instead of using additional devices, the caching rule-based
approach involves writing caching rules into switches down-
stream of the target switch, and it leverages SDN controllers
to generate probe packets and inject them into the DP through
a control channel; these probe packets will subsequently be
trapped by the deployed caching rules [15], [70], [77]. The
caching rule-based approach can also be called packet trajec-
tory tracing [103]–[105], and methods based on this approach
can be divided into three types based on the use of caching
rules. In methods of the first type, caching rules are used to
send matched packets directly to controllers, which then re-
inject these packets to the DP [15]. In methods of the second
type, the packet header information at each hop is copied to
the controller [70], [106], [107]. Methods of the third type
use caching rules to encode path information (e.g., switch
identifiers and path flags) in the header of each probe packet;
when the packet is sent to the controller, this information is
used to decode the forward path of the packet [103]–[105].
This approach can provide more precise data about net-
work behaviors, but it can also induce traffic overhead in
the control channel and interfere with normal network opera-
tions. Due to the limited memory capacities of the switches,
one also needs to be concerned with the trade-off between
the resource overhead for switches and the accuracy of the
measurements.

B. Traffic Statistics

For monitoring network behaviors, traffic statistics are also
an important type of data that can provide necessary infor-
mation on the network state (e.g., network topology and link
bandwidth utilization) for network manipulation. Traffic statis-
tics are often collected and stored in the local storage of
switches in the form of various metrics and are then proac-
tively reported to or passively extracted by controllers. This
type of monitoring is called network measurement. With the
benefits of SDN, network measurement techniques for collect-
ing traffic statistics can be optimized in terms of both accuracy
and overhead. In this section, we introduce the techniques for
network measurement in SDN.

1) Traffic Counting: Counting the packets traversing
switches from the memories of those switches, via mechanisms
such as NetFlow, sFlow and SNMP, is a common approach
for collecting traffic statistics. SDN protocols also provide
many types of counters, such as per-port counters, per-rule

360 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE IV
SDN SYSTEM MONITORING FOR FAULT MANAGEMENT

counters and per-group counters [40], [41], for collecting
traffic statistics. The statistical data collected by these counters
can be used in faulty device localization, traffic matrix esti-
mation, network anomaly detection and configuration verifi-
cation [108], [109].

However, these counters do not currently support sampling
and thus can result in high overhead with respect to switch
memory [110]. Moreover, not all counting data are useful
for evaluating certain requirements, e.g., detection based on
time-window data. In addition, to ensure satisfactory network
forwarding performance, these counters can catch traffic events
only at a subsecond rate and update their statistics every
second [111], [112], which is too slow for stringent real-
time monitoring requirements. To address these issues, many
researchers have combined SDN protocols with traditional net-
work measurement mechanisms to reduce memory overhead
and improve measurement granularity [113], [114]. To reduce
the overhead imposed by traffic counting, Hu and Luo [113]
implemented a network tomography algorithm in which only
a few OpenFlow rules are set up for direct measurements and
other flow data are inferred based on SNMP link counters.
OpenSample [114] leverages sFlow packet sampling to provide
near-real-time measurements.

There are also other tools, such as UMON [29] and
StateMon [115], in which the focus is placed on decoupling
measurement policies from forwarding policies to provide flex-
ible and fine-grained measurements. These tools rely on an
additional monitoring table with more fine-grained match-
action entries (e.g., TCP FIN, TCP SYN and ACK, which
are not supported by OpenFlow counters) in the OpenFlow
flow table pipeline for monitoring specific flows. With this
table, measurement control can be decoupled from forward-
ing control, and specific APIs can be provided to allow
network operators to specify custom measurement policies.
Based on this idea, several highly efficient measurements,
namely sketch-based measurements [30], [116], [117], have
been proposed. A sketch is a programmable data structure
for collecting and storing flow information in the DP and
can effectively reduce the overhead of data collection. It
can also improve the flexibility of measurement deployment
and support more measurement features, e.g., bit check-
ing, different levels of measurement granularity, and specific

probabilities [30], [116], [117]. In addition, with the emer-
gence of P4, this approach can be easily implemented in
network devices.

2) Packet Mirroring: Since the implementation of the above
approaches often requires switches to be modified, these
approaches are not supported by all types of devices in today’s
networking world. Port mirroring is an alternative monitor-
ing approach that is supported by most modern switches.
When port mirroring is set up, a switch will send a copy
of every network packet seen on one traffic port to another
measurement port for external traffic analysis. Port mirroring
can be more easily implemented in SDN networks; specific
port or flow mirroring rules can be installed in switches such
that the matching packets will be copied to a network anal-
ysis agent [106], [107]. Here, we call this approach packet
mirroring.

Packet mirroring has been applied in many SDN fault
management solutions to enable accurate network analy-
sis [70], [106], [107]. By installing mirroring rules in switches,
ndb [106] can tell switches to create a “postcard” (which con-
sists of a packet header, output ports, the version number of
the matched rule and a switch ID) for each packet traversing
a switch and send this postcard to a packet history analysis
agent for fault identification. A similar idea is also imple-
mented in Planck [118] and EverFlow [119]. Planck focuses
on mirroring the traffic at ports in a single commodity switch
to a directly attached server through the installation of mirror-
ing rules; thus, millisecond-level network measurement can be
implemented. EverFlow uses mirroring rules with more match-
ing fields (e.g., TCP SYN, FIN and RST) to collect network
packets in a large data center network. Packet mirroring can
provide detailed network information for the detection of var-
ious abnormal network states, e.g., arbitrary packet loss, link
congestion, and forwarding loops. However, high overheads
are associated with both mirrored packets and “postcards”.

3) End-Host Monitoring: The aforementioned approaches
are all implemented in switches; thus, they require switch
support, and they can lead to increased memory consump-
tion and computing loads for the switches. Recently, sev-
eral proposals have pushed network measurement tasks to
end hosts, with a uniform interface at each end host and
a concentrated controller for processing any queries; this

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 361

approach can reduce traffic overhead in terms of SDN network
resources [112], [120], [121].

HONE [120] combines end hosts with switches to imple-
ment certain measurement tasks, thereby providing a uniform
interface for querying the states of network devices via the
concentrated controller. With end-host monitoring, a wide vari-
ety of management tasks, such as performance diagnosis, the
collection of TCP statistics and link utilization calculations,
can be implemented. However, computing these data locally
may result in a lack of fine-grained control. To address this
issue, Felix [121] generates matching filters from high-level
user queries and routing configurations to control local data
processing. Trumpet [112] focuses on implementing end-host
measurements at line speed for a wide variety of monitoring
use cases, e.g., detecting correlated bursts and losses, iden-
tifying the root causes of transient congestion, and detecting
short-term anomalies.

C. Channel Messages

SDN maintains several types of channel interfaces among
its components, including the SBI, NBI, EBI and WBI.
By monitoring messages over these channels (namely, chan-
nel messages, including SBI messages, NBI messages and
EBI/WBI messages), the interrelations among the planes can be
reconstructed and used to provide global visibility of the whole
SDN system for fault management [16], [17], [20], [88], [97].

1) SBI Messages: In the SDN paradigm, SDN controllers
leverage southbound protocols (e.g., OpenFlow and ForCES)
to manage network devices and implement custom network
services in the DP. Monitoring SBI messages can provide vis-
ibility of all network configurations and state changes in the
DP [19], [20]. For example, snapshots of the network (includ-
ing the network topology and the forwarding function of each
device) can be constructed from these messages and then used
to verify the correctness of the network states via advanced
formal verification or other checking techniques, as discussed
in Section V-A1. In addition, these data can be used to vali-
date the correctness of controller actions for southbound API
requests [16], [17].

To collect the messages sent over the control-switch chan-
nel, a common approach is to use the controllers to record
them. However, this is useful only for open-source SDN
controllers and may, in turn, increase the computing costs
and signaling loads for the controllers. Another approach is
to deploy an external collector proxy on the control-switch
channel to intercept and replicate these messages and sub-
sequently send them to an out-of-band server for further
analysis [19], [20]. Although this approach can avoid the
imposition of additional overhead on the controllers, it is dif-
ficult to ensure that no additional latency will be incurred
for communications between the controllers and switches. In
addition, the occurrence of incorrect rule installations in the
DP (Section III-A2) can affect the credibility of the network
snapshots constructed from SBI messages.

2) NBI and EBI/WBI Messages: Similarly, NBI and
EBI/WBI messages also are interaction events, but NBI
messages are used for communications between the CP

and AP, whereas EBI/WBI messages carry communications
among distributed controllers. These messages can also be
collected using the same approaches applied for SBI mes-
sages and can be used to analyze the correctness of the
corresponding interactions (e.g., policy logic updates, mes-
sage requests/responses, data synchronization, and monitor-
ing/notification) between controllers and apps or among
controllers [16], [17], [88], [97], [98]. However, unlike for
SBI messages, there is currently no standard for messages
exchanged through these two types of interfaces, and vari-
ous common APIs or custom protocols are implemented in
different controller platforms [1]. This situation may result in
low compatibility and interoperability among different con-
trollers and apps. Thus, the main challenge in implementing
an efficient monitoring mechanism for NBI and EBI/WBI mes-
sages is how to optimize that mechanism for different APIs to
achieve the maximum performance.

D. Software Behavior

As a software entity, an SDN controller often consists of
numerous program codes, which constitute various modules
and are distributed in different machines to guarantee high
availability (HA) and scalability. The monitored actions of
these program codes can be used to explain the software
behaviors of controllers, such as how external events (e.g.,
Packet_In and NBI requests) are handled, how network ser-
vices are materialized into underlying network devices, and
how these controllers maintain their scalability and efficient
network control capabilities [16], [17]. These data are cru-
cial for finding and understanding problems in controllers that
induce network anomalies or function failures; such problems
appear to be particularly important for the development of
SDN controllers in this immature stage of SDN.

In software engineering, various profiling
techniques [96], [157], [158] have been developed for
monitoring software behaviors, e.g., program logging, pro-
filing and code instrumentation. Program logging is the
most popular tool for recording system events and can be
used to achieve basic debugging functions. The logging data
can be used to construct control flow graphs or program
workflows to determine the root causes of faults that have
occurred [158]–[160]. Since many controller platforms
(e.g., ONOS and OpenDaylight) are implemented based on
distributed architectures, many advanced software tracing
tools can be applied in SDN networks, such as Google
Dapper [158], which is designed for large distributed systems
and implemented based on code instrumentation. Interested
readers are referred to [96] for more details on monitoring
and debugging mechanisms in software engineering.

V. FAULT DIAGNOSIS

Troubleshooting networks is always a difficult and arduous
task, especially when combined with the multi-tier architecture
and complex network states in SDN. Given the detailed SDN
fault characteristics described in Section III and the SDN sys-
tem monitoring techniques discussed in Section IV, we provide
an overview of the currently available fault diagnosis solutions

362 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE V
FAULT DIAGNOSIS TAXONOMY FOR SDN

that have been proposed for SDN networks. As illustrated in
Table V, we classify these fault diagnosis solutions based on
the methodology applied for each element (i.e., at the DP,
CP and App levels) in the SDN stack following a bottom-
up approach. Finally, we close this section by discussing
work on the integration of fault diagnosis for the whole SDN
paradigm.

A. Fault Diagnosis for the Data Plane

By properly configuring network devices, network opera-
tors can implement various network services based on specific
requirements. As discussed in Section III-A, faults in the DP
can potentially induce unexpected network states that are quite
different from those desired by operators. Many network trou-
bleshooting tools (e.g., ping, traceroute and tcpdump)
have already been proven to be inefficient for SDN as a newly
emerging networking paradigm. In this section, we discuss
fault diagnosis for the DP based on five main approaches:
configuration verification (Section V-A1), formal probe test-
ing (Section V-A2), route tracing (Section V-A3), interactive
network debugging (Section V-A4) and testing for data agents
(Section V-A5).

1) Configuration Verification: In any networking paradigm,
configuring networks toward desired specifications is
an arduous and error-prone process, and SDN is no
exception. Recently, a number of network verification
techniques [19], [20], [27], [122] have been proposed for
detecting issues in SDN network configurations. In these
techniques, the network states (obtained from network
configurations or control messages) are modeled in the form
of specific data structures or formal expressions, and their
correctness is verified based on the desired properties. We

categorize these research solutions into two groups: static
verification and real-time verification.

a) Static verification: Static verification originated from
an early paper [63] in which the whole network was modeled
as a 3-tuple G = (V, E, P), where V is the set of devices, E
is the set of links between vertexes, and P represents the for-
warding policies applied on links. By virtue of its centralized
control strategy, SDN can simplify the verification process by
providing global visibility of the whole network.

Header space analysis (HSA) [27] was proposed as a gen-
eral and protocol-agnostic framework for statically checking
for configuration issues. In HSA, the packet header space is
modeled as a concatenation of bits, and a packet is represented
as a point in the header space, which can support newly emerg-
ing protocols and arbitrary field formats. All NFs are modeled
as box transfer functions, which transform one subspace into
other subspaces, and the entire network is formulated as a net-
work transfer function and a topology transfer function. Based
on this model, several search strategies are applied in HSA to
identify many configuration issues in the DP.

HSA has been applied in many SDN research articles and
commercial products, [16], [19], [133], [134], [141]. However,
HSA has some limitations, as follows: 1) Low accuracy: It is
difficult to distinguish different packet types, e.g., IP and TCP,
with the HSA model. 2) Low scalability: HSA assumes fixed
forwarding rules and fixed packet headers, which may cause
it to fail in complex stateful networks. 3) Low expressiveness:
The specifications are written with ad-hoc codes.

To address these issues, many mature formal methods (sum-
marized in Table VI and further detailed in [38]) are used
to verify network correctness based on formal models and
provide counterexamples [122], [123]. In these solutions, the
terms implementation and specification refer to the actual

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 363

TABLE VI
FORMAL METHOD

network states and the desired network properties and policy
specifications, respectively. In addition, the fault localization
problem is reformulated as a formal verification problem based
on formal models (e.g., finite state machines (FSMs) and
binary decision diagrams (BDDs)), which can then be solved
with mature verification tools (e.g., Z3, Alloy and KLEE).
For example, in FlowChecker [122], the verification problem
is solved through symbolic model checking, in which network
configurations are encoded as BDDs and the desired properties
are written in computational tree logic (CTL). Anteater [123]
treats configuration analysis as a Boolean satisfiability (SAT)
problem, in which the packet header is represented by a
symbolic variable and the network is modeled as a 3-tuple
G = (V, E, P).

In addition to comparisons with network properties,
Xu et al. [124] considered verification based on SDN con-
troller states. In their approach, configurations are extracted
from both controllers and end hosts, their states in three net-
work layers (L2, L3 and L4) are modeled as BDDs, and
cross-plane correspondence checking is performed to iden-
tify any differences in the mappings between the controllers
and end hosts in the same layer. This approach offers a more
detailed verification of the states in different network layers,
e.g., L2 connectivity, L3 reachability, and L4 security groups
and packet filtering.

b) Real-time verification: Static verification is an offline
process and cannot be used to monitor the correctness of the
current network state in real time. Recently, several real-time
verification solutions have been proposed. The core idea of
real-time verification is to intercept and replicate control mes-
sages by establishing a proxy between controllers and switches
(as described in Section IV-C) to obtain network update mes-
sages at run time and incrementally update the network model
to verify the network configurations.

When implementing real-time verification, the time effi-
ciency of the verification process is key. Several solutions
based on network slicing have been proposed [19], [20], in
which the network model is sliced into packet equivalence
classes (ECs) to allow the verification to be processed in par-
allel. Here, an EC is a set of packets that experience the same
forwarding actions. Veriflow [20] utilizes a trie structure to
search for the rules in the ECs that are affected by a new
rule, and it models these affected ECs and their forwarding
states as forwarding graphs. NetPlumber [19] builds on HSA
to incrementally model packet transfer and uses a dependency

graph (plumbing graph) to represent the relationships among
different rules. It also clusters the graph into several subgraph-
based ECs and generates and sends HSA “packets” based on
specific queries into these subgraphs (which are related to
the new rules) to check the validity of policies and invari-
ants in parallel, thus achieving near-real-time performance
similar to that of Veriflow. Through partial analysis per-
formed by means of incremental algorithms, these two tools
can perform verification within hundreds of microseconds.
While Veriflow provides functional APIs for invoking differ-
ent traversal strategies to verify various violations of network
invariants depending on users’ queries, NetPlumber provides
a formal language in which to express policy checks and
supports more verification functions (e.g., arbitrary header
modifications) than Veriflow does due to its protocol-agnostic
HSA model.

Seeking a more time- and space-efficient approach for
network verification, Yang and Lam [64] proposed atomic
predicates for specifying packet filters and transformers, which
are the coarsest ECs. The AP verifier [64] precomputes the
set of atomic predicates for all port predicates in the network
and computes separate sets of atomic predicates for forward-
ing and ACL predicates (represented by BDDs) in real time.
Then, it generates a reachability tree labeled with the identi-
fiers of the atomic predicates to search for network property
violations. Since the time requirements can be greatly reduced
by computing operations on these identifiers rather than on
the packet header fields, the AP verifier can better achieve
real-time network verification. Yang et al. then considered
a problem observed in several previous real-time verification
approaches, namely, their limited scalability to packet trans-
formations [19], [20]. To address this problem, they proposed
APT [66], in which the packet header is represented by a stack
of protocol headers. Like the AP verifier, APT also relies on
a transformation to generate atomic predicates represented by
BDDs to verify the desired network properties.

Although these packet-equivalence-based approaches are
efficient for real-time verification, they also raise a problem of
how to efficiently handle operations that involve large numbers
of ECs [125]. To address this issue, Delta-net [125] exploits
the network characteristic that similarities among the forward-
ing behaviors of packets can be identified from parts of the
network rather than its entirety. Instead of slicing the network
model, Delta-net leverages a single edge-labeled graph to rep-
resent the entire network and incrementally transforms that

364 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

graph as network updates. It then uses the concept of atoms, as
proposed in [64] and [66], and automated precision refinement
on the graph to achieve real-time verification.

In [126], a stepwise-refinement-based verification tool,
Cocoon, was proposed to further improve the speed of con-
figuration verification. In Cocoon, the verification process
is separated into static verification and run-time checks. A
programming language and a verifier for this language are pro-
vided to allow users to specify a high-level view of the correct
network behavior. Cocoon uses a set of run-time-defined func-
tions (RDFs) to capture run-time configurations and checks
them against static assumptions defined at design time to find
violations. This separation offloads most of the real-time check
cost to the static verification process, thus enabling faster
verification of configuration correctness than is possible with
NetPlumber and Veriflow.

The real-time verification tools introduced above all collect
DP snapshots from the control channel. However, collecting
snapshots has a potential shortcoming in that, in a large-
scale dynamic network, it is difficult to guarantee consistency
between a collected snapshot and the network state due to the
frequent changes, unsynchronized updates, and update delays
in the network. Libra [68] attempts to handle this issue by
first replaying the network events within a specified period to
reconstruct the current state of the network. Then, for verifi-
cation, it uses MapReduce to slice the network (modeled as
a directed graph) into subgraphs according to different pre-
fixes and analyzes these subgraphs in parallel. Thus, Libra
can handle both snapshot inconsistencies and many forwarding
faults.

Another issue that arises with these real-time verification
approaches, including static verification, is that the net-
work models are programmed in a general-purpose language
(e.g., C). Such languages may suffer from scalability issues,
especially for stateful or new protocol networks because of
the more complex network states involved. Panda et al. [127]
designed a restricted language for modeling middleboxes and
then used an SMT solver, Z3, to verify pipeline and isola-
tion invariants in networks. Their approach leverages Veriflow
to check the input topologies and forwarding tables and pro-
duces a forwarding graph, to which the user can add assertions
describing the physical behavior of the network, which are
then provided to Z3 for verification. NOD [65] is an optimized
version of Datalog for expressing specifications and network
models; it was developed by modifying the Z3 Datalog imple-
mentation to provide solutions for all reachability queries
with the support of software-defined elements, e.g., P4 and
OpenFlow.

c) Discussion: The network verification techniques intro-
duced above are summarized and compared in terms of their
network models and functions in Table VII. These research
solutions can be divided into two classes: those that rely on
new data structures for modeling networks (HSA, NetPlumber,
VeriFlow, AP verifier, APT, Delta-net and Libra) and those
that represent networks using formal models (FlowChecker,
Anteater, Panda and NOD). While the former may be more
consistent with the network characteristics than formal mod-
els that enable real-time verification are, the latter can provide

more flexibility in verification and can support complex
networks by leveraging expressive modeling languages and
mature verification tools for formalizing network implemen-
tations and property specifications. However, the problem of
state-space explosion in formal verification needs to receive
greater attention with regard to optimization when formal
models are applied for network fault diagnosis. Note that
although these network verification approaches can identify
potentially abnormal network states in the DP, they can-
not address inconsistent rule installation issues in the DP
since the verification is performed solely on the basis of the
controllers’ views. They also cannot effectively verify state-
ful network behaviors since the snapshots obtained from the
control channel are insufficient to explain these behaviors.

2) Formal Probe Testing: Formal probe testing is a process
that leverages probe testing in combination with formal veri-
fication techniques to provide a dynamic verification solution
for the rule inconsistency issue in SDN networks. Such testing
is commonly based on the assumption that the policies in the
CP are correct. Probe packets are then generated to observe
the actual DP behaviors to validate the consistency between
these two planes. Two problems arise in the implementation
of such formal testing: how to generate probe packets for dif-
ferent verification purposes or to cover the entire network and
how to capture the probe results with low overhead. By pro-
viding a logical view of the entire network, SDN can facilitate
packet generation. However, faults in the DP (e.g., software
bugs, rule overlap [77], and priority conflicts [70]) also pose
challenges for network inspection. Thus, a key question in
formal testing is how to implement an accurate and efficient
forwarding inspection based on probe results [70].

ATPG [28] leverages the HSA model [27] to model all net-
work behaviors and precompute all possible test packets to
cover all rules in each switch. Given a set of test hosts peri-
odically sending and receiving test packets, ATPG formulates
the rule liveness problem as a SAT problem that can reveal
forwarding and congestion issues in the DP. On the one hand,
the use of additional equipment can introduce a scalability
problem. On the other hand, the batch packet generation in
ATPG may result in much poorer timeliness for large-scale
and dynamic networks. To address these issues, Monocle [15]
(an extension of ProboScope [77]) formulates the flow table
logic in the DP as a SAT problem to generate probe packets
and sends them to switches via controllers. Then, it leverages
the catching rules installed in the corresponding switches to
trap these probe packets. Monocle serves as a proxy between
the CP and DP, allowing it to monitor each network event (e.g.,
rule update) and verify each related rule with probe packets in
real time. In addition, in the steady state, Monocle provides
periodic testing of the whole network.

However, the verification provided by the aforemen-
tioned tools may be inaccurate due to a lack of detailed
packet processing information. To overcome this shortcoming,
RuleScope [70], [128] leverages a “postcard” [106] (generated
through packet mirroring, as discussed in Section IV-B2) to
obtain more information for accuracy inspection. By means
of a carefully designed SAT solver for packet generation
and dependency-graph-based fault inference algorithms, it can

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 365

TABLE VII
CONFIGURATION VERIFICATION

inspect the network for both rule loss and priority faults.
This approach can yield a high-accuracy analysis of for-
warding behaviors. Unfortunately, the high data collection
overhead incurred for packet mirroring is not a negligible
issue.

Another difficulty facing these verification tools is that
catching-rule-based data collection can increase memory
resource consumption and induce interference in normal net-
works. In addition, the high time cost of the probe generation
process still has not been fully resolved in either RuleScope
or Monocle. VeriDP [73] offers a different solution for ver-
ifying the DP to address these issues. A VeriDP pipeline is
added alongside the OpenFlow pipeline in switches to record
packets. OpenFlow messages are monitored to construct a path
table using a BDD, and the consistency between the path table
and the traffic statistics collected from the VeriDP pipeline
is inspected to find any inconsistent network behaviors. To
localize the root causes of faults, VeriDP traverses all possi-
ble paths and infers that the faulty switches lie on the invalid
path(s). VeriDP can achieve a verification speed of 3 µs per
packet. However, the need to modify switches may limit its
widespread adoption.

Currently, many modern networks are stateful. In these net-
works, many complex NFs (e.g., network address translators
(NATs), deep packet inspection (DPI), and load balancers) are

mixed with stateless devices (e.g., switches and routers), and
most of them are outside the visibility of SDN control. Thus,
these formal testing techniques suffer from scalability issues
due to the need to process more complicated data. Recently,
several proposals, such as FlowTest [101] and BUZZ [102],
have been presented in an attempt to solve this problem. In
these solutions, probe packets are generated based on a state-
ful network model. FlowTest models the DP functions as state
machines in order to formulate probe packet generation as a
formal problem and performs validation in accordance with the
probe results. BUZZ [102] models the DP on the basis of the
operators’ policies and NF models (using the FSM approach)
and then generates test traffic based on an optimized symbolic
execution to trigger policy-relevant behaviors of the DP model.
By means of the DP model and optimized symbolic execution,
BUZZ can test a stateful network for policy violations with
high efficiency and scalability.

3) Route Tracing: As a complement to inferring forwarding
behaviors based on observed packets, route tracing focuses on
tracing packet trajectories for path inspection and rule verifi-
cation. In route tracing methods, specific tags are embedded in
the headers of target packets traversing each switch to record
path information, which can be used to localize faults related
to a specific link and provide efficient end-to-end monitoring
and verification.

366 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE VIII
PROBE TESTING AND ROUTE TRACING FOR MONITORING NETWORK BEHAVIOR

Similar to IP traceroute, SDN traceroute [129] can
provide intuitive visibility of packet traversal for SDN network
maintenance. It assigns each switch a unique ID and several
high-priority rules for forwarding probe packets to a controller,
which then re-injects the probe packets into the DP. In this
way, hop-to-hop packet information can be gathered. With
this tool, operators can find where packet traversal fails and
reveal issues such as rules conflicts, controller bugs, and traffic
latency in the network. Everflow [119] applied a match-and-
mirror strategy to trace individual packets across the network.
By configuring all switches with specific rules to trap probe
packets tagged with a “debug” bit at a specific sampling rate
and mirror each matched packet to send to analyzers via the
GRE protocol, packet-level telemetry can be implemented for
large data center networks. In addition, Everflow provides sev-
eral debug applications, including a latency profiler, a packet
drop debugger, a loop debugger, and an equal-cost multi-
path profiler, in the SDN controller to guide probe packet
generation and identify the root causes of specific network
failures.

However, sending packets to a controller hop by hop may
result in significant overloading of the controller workload
and link bandwidth. Some in-band testing tools (i.e., tools
that encode path information into packets), in which pack-
ets are incrementally embedded with different tags accord-
ing to specific rules during their traversal and are sent
to a controller as their destination, have been proposed
to solve this problem [103]–[105]. PathletTracer [103] and
PathQuery [105], [130] model network configurations in the

form of state machines and encode path queries as state tran-
sitions implemented under specific rules, according to which
the tags in the packets are changed during their traversal.
By analyzing a departing tagged packet to decode its traver-
sal path, these tools can check for consistency issues with
high-level policies via state rollback. A similar approach
is also applied in REV [72] to address rule modification
issues related to unexpected external operations or attacks,
but in this case, the tags are updated by means of a secret
key shared with the controller in each switch. This type of
approach requires only a few packet header fields to carry
tags, but it can incur excessive computational costs for gen-
erating trace rules and resource costs for installing these
rules.

In contrast, Cherrypick [104] directly embeds identifiers into
the packet header at each switch and performs link sampling to
reduce unnecessary header space costs. The latter capability is
implemented based on clever use of a well-structured network
topology. This approach can minimize the number of rules
required for path queries but suffers from a lack of general-
ity due to its strong assumptions, e.g., a symmetric topology.
Thus, the authors of Cherrypick extended this work to sup-
port arbitrary network topologies, resulting in a tool called
PathDump [131], based on the belief that networks will evolve
to support larger packet header spaces to permit the embed-
ding of more identifiers. By providing network operators with
APIs for expressing their path queries, these tools can offer
many debugging functions for various network failures based
on their analysis of packet trajectories.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 367

For clarity, we compare these route tracing and formal
probe testing solutions in Table VIII since they have similar
diagnosis characteristics.

4) Interactive Network Debugging: Interactive debugging,
as performed with tools such as gdb and mtrace, is a process
that allows software programmers to monitor the execution of
a program, stop it, restart it, and set breakpoints. Unfortunately,
this approach cannot be directly applied to debug traditional
networks since their elements often behave as a black box with
distributed protocols. Some network troubleshooting tools,
e.g., ping, tcpdump and NetFlow, provide only limited
debugging capabilities. With SDN, the decoupling of the net-
work architecture opens the door toward the development of
powerful network debuggers.

By means of caching-rule-based traffic tracing, interactive
debugging can be implemented for SDN network maintenance.
Similar to gdb, ndb [106] has been proposed as a network
debugger with two basic debugging functions (breakpoint and
backtrace) for SDN network maintenance. It traces network
flows by mirroring packet information (i.e., generating post-
cards) at each hop. Then, a breakpoint (i.e., a flag or filter
defined in the packet header) is used to catch the target packet,
and its forwarding history can also be reconstructed from
the collected postcards. Based on the detailed packet process-
ing information, these debugging functions can help network
operators to uncover protocol compliance errors, inconsistent
rules and controller logic bugs. This work was subsequently
extended to develop NetSight [107], which provides APIs
for setting breakpoints and more powerful debugging func-
tions, including an invariant violation monitor (netwatch), a
packet history logger (netshark), and a network profiler for
link utilization (nprof).
ndb [106] and NetSight [107] both provide a positive back-

trace function, which infers the root causes of a fault starting
from the observation point (an observed alarm event or several
abnormal messages). However, their troubleshooting attempts
may fail without a proper starting point for backtrace. To
address this shortcoming, Y! [133] utilizes the concepts of
positive provenance and negative provenance to construct a
more complete backtrace for detecting configuration issues.
In Y!, the positive provenance represents the normal backtrace
and the negative provenance is responsible for explaining why
the desired network state does not occur. Y! records network
behaviors, configurations and packet headers with timestamps
and uses this information to construct a provenance graph (i.e.,
a causal connection tree). By replaying the graph, it processes
a backtrace on each possible branch to find the reasons for the
observed faults (e.g., logic inconsistencies, failed assertions or
policy invariants). DiffProv [134] extends this work by adding
a differential provenance, which can explain the differences
between two provenance trees, rather than relying on a sin-
gle provenance as in Y!. DiffProv finds similar events with
the correct behaviors to construct a reference provenance tree
by looking back in time at the same system or looking for
a different system with similar operations. It then compares
the reference provenance tree against a buggy provenance tree
based on a branching backtrace approach. Compared with
Y! DiffProv can be used to find more network issues, e.g.,

incorrect rule installations, unexpected rule expiration, mul-
tiple faulty entries, and rule conflicts due to multicontroller
inconsistencies.

5) Data Agent Testing: As described in Section III-A3,
faults in data agents (e.g., in the completeness and correct-
ness of OpenFlow implementations and the compatibility and
interoperability of switches) must be addressed before they are
deployed in actual networks. Designing testing processes for
SDN switches is useful for finding inconsistent implementa-
tions and potential bugs. The main research solutions proposed
for addressing this issue are identified in this section.

OFTest [135] aims to provide a unified testing framework
with hundreds of test cases for testing OpenFlow switches.
Several test hosts are deployed around the switch to be tested,
and these hosts are responsible for generating test packets to
be sent to the switch based on the test cases and analyzing
the results received from the switch. However, the test cases
are manually developed, which makes it difficult to evaluate
OFTest’s coverage of the OpenFlow specifications. In addi-
tion, to test any new feature, it is necessary to update the
set of test cases. OFTest currently supports only OpenFlow
1.0 and 1.1, with a limited ability to support version 1.3.
OFLOPS [76] is another testing framework; it offers functions
for packet generation, capture and timestamping for testing
OF implementations. However, its objective is to identify
the performance characteristics of OpenFlow switches (e.g.,
OpenFlow packet processing actions, rule update rates, flow
monitoring capabilities, and OpenFlow operation interactions)
rather than functional errors.

Several other works leverage formal verification techniques
to find OpenFlow implementation issues [55], [56], [136].
OFTEN [136] is an interactive testing tool that leverages sys-
tematic state-space exploration techniques (i.e., NICE [23]) to
generate properties from high-level control logic (i.e., apps)
for validating real switch executions. However, the properties
extracted from a system may often rely on the developers’
knowledge, and it is difficult to guarantee the correctness of
these properties for OF switch testing. SOFT [55] focuses on
issues of compatibility and interoperability between different
switches. It is a white-box testing technique in that it needs
the source codes of the OpenFlow agents in different switches
to extract their symbolic execution models. Combined with
concrete testing inputs, SOFT can find more potential incon-
sistencies between any two OF agents by comparing their
symbolic trees. However, the necessary source codes may not
be easy to obtain. Yao et al. [56] presented a model-based
black-box testing approach for SDN DPs. In their technique,
the forwarding behaviors of the DP as defined in the OpenFlow
specification are modeled as FSMs to generate test packets to
be sent to the switches, and a smaller data graph is extracted
from the model for performing correctness verification based
on formal specifications.

B. Fault Diagnosis for the Control Plane

The SDN CP serves as a network operating system and
holds various types of control logic for network provisioning,
management and maintenance. However, diverse configuration

368 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

issues and software faults (as described in Section III-B) can
degrade the reliability of SDN networks. A number of solu-
tions for diagnosing faults in the CP have been proposed. We
list simple descriptions of these tools and the types of faults
they can localize in Table IX. In this subsection, we classify
these solutions and discuss them as follows.

1) Conflict Verification: As an open network platform, SDN
inevitably faces the issue of race conditions in the CP, which
forces operators to design conflict verification mechanisms.
In these mechanisms, operators often design a set of basic
constraints (e.g., security policies, firewall policies, or existing
rule sets) as the properties that newly generated rules need to
satisfy.

Rule conflict verification is often implemented based on
static network security policies, which comprise a set of non-
bypass properties representing the correct behavior of the
network. FortNox [89] extends the NOX OpenFlow controller
with a security policy enforcement kernel that can check for
flow rule conflicts in real time. Based on the set of constraints
defined in the security policy, it uses alias sets to represent
rule information and performs a pairwise comparison between
a new flow rule and each constraint. FLOVER [137] leverages
the Yices SMT solver to check for conflicts between flow rules
and the network security policy. When an OpenFlow controller
needs to update the flow rule set in response to a new rule
request from the DP, FLOVER formalizes the created rule set
with these non-bypass properties as a SAT problem to verify
the correctness of the rule set.

As an alternative to performing verification by means of a
component in the SDN controller, some solutions implement
it through a third-party proxy to reduce the controller work-
load. Natarajan et al. [90] addressed the problem whereby
existing virtualization solutions implement network resource
isolation only at the policy level and implemented flow table
isolation in the DP to achieve fine-grained conflict detection
and resolution. They designed a detection system and deployed
it close to FlowVisor [161] (an OpenFlow network virtual-
ization technique deployed in between the controller and the
switches as described in Section VII-A1) to intercept flow
installation messages. Based on this system, they proposed two
conflict verification mechanisms. The first mechanism lever-
ages a hybrid hash-trie structure representing the flow tables
to search for conflicts. The other mechanism infers conflict-
ing flow entries based on an ontology-based logic inference
system. When a conflicting flow is identified, the detection
system will drop this flow and report the result to FlowVisor.
A similar conflict interception system is applied in [138], but
that system models the network rules using first-order logic to
detect rule conflicts.

Although these solutions can efficiently identify rule con-
flicts, they do not consider the dependencies between rules
and the network state, which may lead to false positives.
Wang et al. [139] modeled OpenFlow rules in the form of
a network topology consisting of the flow paths formed by
the NetPlumb graph [19] and checked for any intersections
between the flow path space and the Deny Authorization Space
defined by the firewall policy. The identified intersections
represent policy conflicts and are regarded as bypass threats

to the SDN firewall. This work was later extended in the
development of FLOWGUARD [140] to provide a tool for
comprehensive dynamic conflict verification. With the support
of more header fields, FLOWGUARD monitors all control
messages to check space intersections to achieve the dynamic
detection of firewall policy violations.

SDNRacer [74], [141] concerns concurrency violations
in controller operations on the flow tables in switches. It
leverages the first happens-before (HB) model to formu-
late the behaviors of networks, including operations on flow
tables (i.e., the reading, addition, modification and dele-
tion of flow entries) and the behaviors of network elements
(e.g., OpenFlow switches, controllers, and hosts). A commu-
tativity specification is defined in SDNRacer, which can be
used in combination with the HB model to check whether
two operations commute. However, even short traces can
yield an excessive number of concurrency violations, which
poses a challenge for the concurrency analysis. BigBug [142]
addresses this issue by exploiting the characteristic that many
violations originate from the same cause. It clusters the input
set of violations into ECs and identifies the most representa-
tive violation in each class using a ranking function. Based on
the results of BigBug, developers can quickly focus on under-
standing the root causes of the most representative violations.

Although these conflict verification approaches are efficient
at finding rule conflicts that may lead to network failures, they
are reactive in nature and thus cannot prevent such conflicts.
We will discuss several solutions that can prevent rule/policy
conflicts and endow SDN networks with fault tolerance in
Section VII-A.

2) Translation Verification: Since apps written with com-
mon programming languages are prone to error, many high-
level programming languages have been proposed to sim-
plify the programming of apps. These languages are often
designed for specific domains, and a compiler or parser (e.g.,
NetCore [162]) is needed to translate programs written in these
languages into low-level flow rule commands. To ensure the
correctness of program translation, the first step is to ver-
ify the correctness of these compilers, namely, translation
verification.

Guha et al. [91] investigated the translation verification issue
for the NetCore compiler [162] on the basis of properties
such as controller-switch consistency, the correctness of barrier
messages for message reordering, and the correctness of trans-
lation patterns. They presented a verified SDN controller based
on the Coq proof assistant (an interactive theorem prover) for
the NetCore programming language, which is a declarative
language. In this verified controller, NetCore programs are
first translated into flow tables, which abstract the behaviors
of switches, and are then further translated into featherweight
OpenFlow, which models the OpenFlow switches, the con-
troller and the network topology in the form of operational
semantics. The verified controller then leverages the Coq proof
assistant to prove the correctness of the program translation by
means of a formal specification and a detailed SDN operational
model. This approach can provide the most basic guarantee
that programs written in high-level languages can be translated
correctly.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 369

TABLE IX
FAULT DIAGNOSIS FOR CONTROL PLANE

3) Software-Based Debugging: SDN controllers are soft-
ware entities that are highly susceptible to software bugs.
Unfortunately, traditional program debugging techniques (e.g.,
breakpoints, assertion, and logging) are insufficient for these
SDN software systems since they are tightly correlated with
complicated network states and are modular and physically
distributed to guarantee their scalability and reliability. To
address this issue, many advanced software-based debugging
tools (e.g., record and replay and delta debugging) have been
proposed for controller software; these tools are built on
traditional debugging solutions but possess more advanced
modifications to improve their feasibility.

OFRewind [83] is a tool that can record and replay network
events to localize the causes of network failures in OpenFlow
networks. It acts as a proxy between the CP and DP, record-
ing OpenFlow messages and re-injecting the traces into the
DP to identify which events trigger a failure. OFRewind also
provides interfaces for specifying the topology, timeline and
specific traffic to allow operators to implement their desired
debugging queries. OFRewind can help network operators to
find issues in controller software, e.g., configuration issues and
invalid actions. AFRO [85] also implements a similar record-
and-reply mechanism to determine whether there are missing
flow rules in the DP. AFRO records all Packet_In messages
in real time and spawns a new controller instance in an emu-
lated environment to replay the network state by feeding in
Packet_In messages. This replay procedure enables the com-
putation of a minimal set of rule changes between the emulated
and current forwarding states. Finally, these different rule sets
are utilized to reconfigure the failed network; this process will
be further discussed in Section VI.

Scott et al. [16], [143] proposed a delta-debugging-based
troubleshooting tool for invariant violation problems caused
by improper network configurations and software bugs in
controller software, e.g., multicontroller coordination errors,
null pointers, race conditions, memory leakage and corrup-
tion. This tool leverages an HSA checker [19] to find any

invariant violations in the network at run time. When faced
with symptoms of a network problem, it uses delta debug-
ging to iteratively select and replay subsequences from the
collected network event sequence to reproduce the observed
failure by means of a network simulator, namely, STS, which
can generate random input sequences based on the causal
relations among events from collected event sequences and
correctly replay network behaviors with SDN controllers using
these sequences. The purpose of this tool is to find a mini-
mal causal sequence (MCS) of the recorded events that can
be used to reproduce the observed violation with the minimal
cost, thereby answering the questions of “what, where, and
when” with regard to a fault in controller software.

4) Testing and Evaluation: The SDN CP plays a crucial
role in an SDN system. The correctness and performance of
the CP are the key factors in ensuring that it can be used to
manage various types of networks of different scales. Testing
controllers to find performance bottlenecks or faulty function-
alities is essential to ensure that the controllers can satisfy the
requirements of actual networks. In this subsection, we discuss
recent research on the testing and evaluation of the correctness
and performance of SDN CPs.

Cbench7 is a benchmarking tool for testing OpenFlow
controllers. It emulates numerous switches that connect to
a controller, generate and send Packet_In messages, and
watch for Flow_Mods to be pushed down. Cbench is a very
useful tool for evaluating the performance of OpenFlow con-
trollers in terms of their OpenFlow message throughput and
latency. NOX-MT [145] leverages Cbench to quantify the per-
formance of NOX. OFCbenchmark [146] is an OpenFlow
controller benchmark that can create a set of virtual switches
for generating OpenFlow messages and can analyze the con-
troller responses to these generated messages. Based on this
tool, the authors also designed a platform-independent testing
framework, FCProbe [148], for analyzing the correctness of

7Cbench - https://github.com/mininet/oflops/tree/master/cbench.

370 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

controller behaviors. SDLoad [147] is a workload testing tool
for SDN controllers that can add workloads to evaluate the
correctness and performance of SDN CP components.

Instead of testing a single SDN controller, JURY [17]
addresses consistency issues in a controller cluster and serves
as a black-box testing tool for verifying the action consis-
tency among controllers. It intercepts and replicates external
events (e.g., Packet_In messages) and internal events (e.g., dis-
tributed database operations, state synchronization, and master
elections) between primary and secondary controllers, and it
collects the generated responses from these controllers. Then,
JURY maps all controller responses to the events and trans-
mits this information to an out-of-band validator to validate
the correctness of the controller actions. JURY can detect var-
ious controller faults, including cluster faults (e.g., database
locking and incorrect master elections) and incorrect event pro-
cessing faults (e.g., Flow_Mod drops and incorrect Flow_Mod
messages).

C. Fault Diagnosis for Applications

Bugs in software programs are inevitable and can become
more serious when these programs are executed in the presence
of complicated network states. The simple syntax debuggers
used in software engineering can play only a small role in
debugging programs. Ensuring the correctness of the logic for
the underlying networks requires programs to be analyzed in
depth. In this subsection, we discuss how to diagnose faults in
apps. The approaches for app fault diagnosis are summarized
with respect to their goals and proposed solutions in Table X.

1) White-Box Verification: Formal verification techniques
can also be applied to debug SDN apps by analyzing both
the network state and the program logic as extracted from
the source codes of the apps or as defined by the program-
mers. In [150], two model checkers (Java Pathfinder and SPIN)
were applied to reveal bugs in OpenFlow apps using code-
based network models, and SPIN was shown to be faster than
Java Pathfinder. However, this work was simple and did not
consider the inherent state-space explosion issue that arises
in model checking since it is often necessary to perform an
exhaustive search of the state space of the graph to deter-
mine whether the specifications hold in all states or whether
counterexamples can be provided.

Canini et al. [151] addressed this problem using symbolic
execution. In this work, packet code paths were clustered by
analyzing the source codes of OpenFlow apps via symbolic
execution, and inputs were automatically generated to iden-
tify errors in OpenFlow apps based on the desired correctness
properties. Building on this work, the authors subsequently
proposed NICE [23], which combines model checking and
symbolic execution to reduce the state space; here, model
checking is applied to check for correctness violations in
system state propagation, and symbolic execution is used to
reduce the size of the searched state space. In NICE, each
event handler is treated as a transition, with several inputs for
network events and global variables for program states. NICE
uses a simple variable to represent the header field of a packet
to determine the packet’s path through the handler. NICE

also models OpenFlow switches and simple host services to
generate and forward packets in the program model. Upon
encountering an abnormal network state, NICE will apply
model checking to explore the state space of the entire system
to find the root cause.

Majumdar et al. [163] modeled control programs and the
network topology (i.e., switches, links and hosts) with a cus-
tom programming language, and a model checker built on this
language was used to verify whether the programs satisfied a
given safety property. To reduce the state space explored by the
model checker, they used partial order reduction and abstrac-
tion techniques to optimize the behaviors of switches, clients,
packets, and controllers. Compared with NICE, this approach
offers model checking with improved scalability and coverage.

Extracting models from low-level languages is a time-
consuming and error-prone process, and its scalability is often
limited. Many high-level language-based solutions have been
proposed to handle this issue by providing domain-specific
programming languages for modeling [45], [46], [152], [153].
In [152], model checking was applied to verify two SDN
programs (a MAC learning switch and a stateful firewall) in
large-scale networks. Verificare [45] predefines system com-
ponents to provide Verificare Modeling Language (VML)
APIs, which enable app developers to model their programs
with VML and then to use various verification tools (such
as SPIN, PRISM, and Alloy) to verify their correctness.
VeriCon [46] was developed to provide a sound tool based on
infinite-state models for verifying apps. By means of a domain-
specific programming language, it converts programs into
first-order formulas that specify constraints on the topology
and desired properties, including topology invariants, safety
invariants and transition invariants. Using a theorem prover
and a SAT solver (Z3), VeriCon can prove whether an invariant
is inductive through the execution of arbitrary events on any
admissible state; otherwise, a readable counterexample will be
presented for the observed error. By this means, the correct-
ness of apps can be verified on any admissible topology and
for any possible sequence of network events.

Beckett et al. [154] found that network properties (or safety
invariants) may vary dynamically, which can cause the static
verification approaches discussed above to fail. They designed
an assertion language (AL) for apps that can annotate con-
trol programs with C-style assertions about the DP to support
dynamically changing verification conditions. By means of
statements in response to these assertions, AL incrementally
updates the properties as the verification conditions change
and uses VeriFlow [20] to check for bugs in apps.

To provide more debugging functions (e.g., stepping, break-
points, and watch variables) rather than simply verifying apps,
OFf [97] was designed as a debugging and testing environment
for SDN apps that is built on top of the fs-sdn simulator [164].
In contrast to ndb [106] and NetSight [107], OFf traces both
the network and program execution states to identify network
failures. It also includes a language-level debugger for basic
language debugging functions, a component for trace replay
and a verification tool for variation validation.

To fix bugs, update programs or restructure features, net-
work programmers need to evolve their programs; however,

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 371

TABLE X
PROPERTY ANALYSIS FOR APPS

techniques for tasks such as verification and testing may be
invalid for newly added features if the existing properties
or tests have not been updated as the program has evolved.
Nelson et al. [153] focused on this concern and proposed
a verification tool (Chimp) based on differential analysis for
the evolution of control software. Chimp is built on Alloy
(a lightweight formal modeling and verification tool), and its
objective is to find semantic or behavioral differences between
two versions of a control program and help programmers to
transfer trust between two versions. Chimp can also find bugs
in a revised program based on its differential properties using
formal methods. This tool plays a role complementary to that
of the aforementioned SDN app verification tools, and the
issue it addresses deserves greater attention.

2) Black-Box Testing: The white-box approaches discussed
above can enable efficient debugging of programs under devel-
opment. However, they sometimes suffer from poor efficiency
(due to close-source apps) or high time consumption (due to
state-space explosion); in addition, many apps contain multi-
ple components with various statements that are not easy to
exhaustively explore. Yao et al. [88] proposed a model-based
black-box testing method for SDN apps that does not require
their source codes. In this model, the software behaviors of an
app are represented by a group of parallel component models
(e.g., packet handlers and entry components). Then, by gen-
erating test sequences based on the partial states of related
components, DP sequences are recorded that can then be used
for SDN network simulation traffic to expose both design flaws
and implementation bugs.

SIMON [98] is an interactive debugger and moni-
tor for OpenFlow apps that allows network operators to
probe network behaviors with custom scripts to find both
implementation errors and policy violations in apps. In

SIMON, several monitors are established alongside an SDN
system to catch network events such as northbound API mes-
sages, OF messages, network traffic, and DP events. With
SIMON, operators can query abnormal network behaviors
without having intimate knowledge of the controller soft-
ware, and SIMON can extract related events and display their
execution in a time line at its debugging prompt.

D. Summary

In this section, we have presented detailed descriptions of
fault diagnosis solutions in the SDN domain for the sake
of classifying and comparing these different solutions. Most
solutions consider the problem of fault diagnosis on only
one plane in the SDN stack. While quite powerful, they
may also lack comprehensiveness. Several solutions have been
proposed as systemic fault diagnosis frameworks for SDN
networks. Heller et al. [92] proposed a systemic troubleshoot-
ing framework for SDN that combines several troubleshooting
tools working together. The SDN network is divided into two
types of layers: code layers (apps, NetHypervisor, NetOS,
and firmware) and state layers (policies, logical view, phys-
ical view, device states and hardware). For troubleshooting,
binary searches are first performed to reduce the scope of the
problem to one code layer through cross-layer correspondence
checking of the state layers; then, the fault is diagnosed in the
identified code layer with existing tools. To provide more flexi-
ble diagnosis functions, Pelle et al. [155] defined a lightweight
framework that combines existing network and software trou-
bleshooting tools for specific troubleshooting configurations.
These tools are combined in the form of troubleshooting
graphs, which represent practical troubleshooting patterns.
EPOXIDE [156] was developed as an extension of this work

372 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 3. State rollback in SDN. In the record stage, the controller states and
switch states are collected and stored as snapshots in the database. When one
component fails, the controller and switch states will be recovered from a
previous correct snapshot.

to provide support for the ad hoc creation of tailor-made
testing methods from predefined building blocks. These tools
represent a preliminary exploration of the development of sys-
tematic SDN fault diagnosis systems, and they deserve greater
attention.

VI. FAULT RECOVERY AND REPAIR

As described in Section III, there are a number of dif-
ferent faults that can cause a network to fail to provide a
desired level of service. While fault diagnosis techniques are
the most critical techniques for network maintenance, devel-
oping techniques to support recovery from error states is also
important for improving network reliability and availability.
We discuss fault recovery in SDN networks from two per-
spectives: state rollback (Section VI-A) and configuration fault
repair (Section VI-B).

A. State Rollback

State rollback is a typical recovery approach that is widely
used in distributed systems. As shown in Fig. 3, the main
concept behind rollback is to periodically record the state
of the system and store it as a snapshot with a timestamp
in data storage or elsewhere. When a failure occurs, a pre-
vious correct snapshot will be chosen to which to roll the
current faulty system back. The rollback process is similar
to the record-and-replay mechanism for fault diagnosis dis-
cussed in Section V-B3, but here, the purpose of the replay is
the recovery of a faulty system. This method can mitigate the
impact of faults, especially for those faults that are difficult to
repair [85], [165], [166].

NetRevert [165] is a checkpointing and rollback framework
for SDN fault recovery. It provides a distributed approach to
collecting system states in which each device (controllers and
hardware/software switches) is responsible for checkpointing
its own state independently. Each state change in a switch
is tagged with a transaction identifier (ID) defined by the
controller and stored as a snapshot ID in that switch. The
controller is responsible for collecting all snapshots from the
switches and selecting a set of network-wide consistent states
to roll the whole system back to a globally consistent state
at the time of recovery. Although the distributed approach to
checkpointing can enable memory load balancing and high

scalability for snapshot storage, it may also face issues of
data synchronization and high computational overheads in
highly dynamic networks. Sasaki et al. [166] also leveraged
the rollback mechanism to revert compromised processes in
network components (e.g., switches, controllers, channels, and
the hypervisor) to pristine states. However, the primary goal
of that work was to minimize the impact of an attack on the
system as a whole.

In addition to recovering the CP and DP, LegoSDN [31]
leverages rollback to address the recovery problem for crashed
SDN apps. To mitigate the impact of faulty apps, LegoSDN
relies on a fault-tolerant controller framework, in which each
app or the controller is running separately in a sandbox. Thus,
it can limit the cost of component recovery without influ-
encing other apps or the controller. LegoSDN continuously
records input events and their corresponding output messages
from SDN apps as the snapshots or checkpoints that are
used to ensure the consistency among different apps and the
controller. When an app has crashed while processing some
events, LegoSDN rolls back the changes made on the CP and
DP by the crashing app and restores the app. Before allowing
the crashed app to re-access the controller, LegoSDN lever-
ages an event transformer to replay predefined events (different
but equivalent to the event triggering the crash) to find an
event with which the app can successfully realize its function.
LegoSDN enables recovery from two types of faults: fail-stops
due to invalid memory accesses or erroneous expressions and
invariant violations.

B. Faulty Configuration Repair

Although rolling abnormal networks back to a previous
correct state has been widely adopted for network recov-
ery, it is often a time-consuming process and can incur high
resource overheads for storing snapshots. Benefiting from
the programmability of SDN, faulty configuration repair is
also an efficient approach for recovering from abnormal net-
work states. In this approach, suitable rule sets (i.e., repairs)
are sought to reconfigure the affected switches. Traditionally,
misconfiguration issues must be manually fixed by network
administers, which is a tedious and error-prone process. The
innovation of SDN provides opportunities to implement auto-
mated fault repair. The following discussion focuses on several
proposed repair approaches for misconfiguration issues.

Incorrect forwarding rules are the major causes of abnor-
mal network states (e.g., forwarding loops and blackholes)
in OpenFlow networks. To address this problem, one sim-
ple approach is to delete the problematic forwarding rules.
However, since a controller is typically responsible for several
apps, each with its own policies, whose rules may potentially
overlap with each other, deleting rules for the individual logic
of one app is inefficient and may induce additional configu-
ration issues. By separating the failure recovery mechanism
from app-specific functionality, a run-time system for auto-
matic failure recovery called AFRO [85] has been proposed.
AFRO consists of three phases: record, replay and reconfigura-
tion. In the record phase, AFRO keeps track of all Packet_In
messages. When a failure is detected, AFRO first spawns a

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 373

TABLE XI
RELATED WORK ON FAULT RECOVERY AND REPAIR

new controller instance in an emulated environment to replay
the network state by feeding it the recorded messages. The
replay results can be used to compute a minimal set of rule
changes between the current and emulated forwarding states.
By installing this rule set, AFRO can recover the network from
its abnormal state.

For improved efficiency in repair generation, formal verifi-
cation techniques can also be used to recover from network
misconfigurations [86], [100]. In contrast to the configuration
verification problem discussed in Section V, the network repair
problem is as follows: given a set of network configurations
(forwarding rules) that violate an invariant, a repaired set of
configurations is sought such that the repair is optimal with
respect to a given objective (e.g., a minimal scope of repair).
Hojjat et al. [86] formulated the repair problem for SDN net-
works as a verification problem and solved this problem by
designing an optimized SMT solver in which faulty network
configurations are translated into a set of Horn clauses for
checking the violated invariant. NEAt is a network repair solu-
tion that can automatically diagnose and repair violations in
real time. It leverages Veriflow [20] to find violations. When
a violation occurs, NEAt slices the network configuration into
a set of ECs and computes the minimum number of changes
necessary to repair the violating EC’s forwarding graph.

In SDN networks, the root cause of a network misconfigu-
ration is often a policy flaw in SDN apps. Although the above
solutions can perform automated network repair generation,
they are inefficient since they simply repair the faulty config-
urations in the DP. They cannot repair the bugs in the SDN
apps that are responsible for these network faults, which will
consequently arise again in the future. To address this issue,
Wu et al. [87], [99] designed a tool that can produce a list
of suggested program patches (repairs) for fixing identified
faults in SDN apps. They had leveraged data provenance back-
tracing in their previous studies [132], [133], as discussed in
Section V-A4, and they extended this work to model both con-
trol programs (written in NDlog, a declarative language) and
data, based on a concept they called the meta provenance.
By applying backtracing to the meta provenance graph, one
can find which node (representing a network event, i.e., a rule
and its related operations) in the graph induces a given fault
and changes the node state in order to infer candidate repairs

for the fault. To further reduce the side effects of a candidate
repair, their tool backtests each candidate via replay using his-
torical data from the network to narrow the set of suitable
repairs suggested for fixing bugs in SDN apps.

C. Summary

The aforementioned recovery and repair solutions are
summarized in Table XI. They represent preliminary attempts
to endow networks with self-healing functions by leveraging
the benefits of SDN, such as centralized management and
network programmability. Fault recovery and repair constitute
an indispensable part of fault management for guaranteeing
SDN network reliability, but further research efforts are still
required to improve the current fault recovery and repair
capabilities in SDN.

VII. FAULT TOLERANCE

Fault diagnosis and recovery techniques have been identified
above. By contrast, this section discusses fault tolerance
techniques, which aim to reduce or avoid the effects of
faults on SDN networks. Conflict resolution is addressed in
Section VII-A, fault tolerance for traffic is considered
in Section VII-B, and infrastructure planning is reviewed
in Section VII-C.

A. Conflict Resolution

This section focuses on how to resolve policy conflicts over
flow rules or high-level network resources among different
apps in SDN networks. We categorize these solutions into
three types: (1) operation isolation (Section VII-A1), in which
virtualization techniques are leveraged to isolate each tenant’s
operations; (2) policy composition (Section VII-A2), which
aims to combine multiple independent policies into a large pol-
icy; and (3) module coordination (Section VII-A3), in which
a coordinator is deployed to reconcile resource competition
among different SDN apps.

1) Operation Isolation: Networks often support multi-
tenancy scenarios, in which multiple tenants operate on shared
network resources. To support this scenario, network virtual-
ization promises to be an effective method of resolving con-
flicts among different tenants while ensuring the correctness

374 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Fig. 4. Two types of network virtualization in SDN. Whereas abstraction attempts to abstract the details of the underlying network to allow tenants to
operate on a virtual network, isolation attempts to isolate tenants’ operations in both the CP and DP to avoid operation conflicts.

of each tenant’s operations on the network. As shown in
Fig. 4, network virtualization can provide two main func-
tions, namely, abstraction and isolation. Whereas abstraction
attempts to abstract the details of the underlying network to
allow tenants to operate on an abstraction layer, isolation
attempts to isolate tenants’ operations in both the CP and
DP to avoid operation conflicts. From low-level virtualization
mechanisms (e.g., VxLAN, NvGRE, and STT) to high-level
hypervisors acting on the SDN CP, a number of network vir-
tualization techniques have been developed. In this subsection,
we discuss these virtualization-based operation isolation tech-
niques in terms of how they can be used to prevent policy
conflicts to support multi-tenancy scenarios for SDN. Note
that here, we simply select a few typical network virtualiza-
tion techniques to illustrate how they support fault tolerance;
a more detailed discussion of network virtualization can be
found in a previous survey paper [167].

FlowVisor [161] was the first network virtualization tech-
nique proposed for OpenFlow networks. FlowVisor divides a
physical network into a set of virtual networks, each being
called a slice. To isolate each slice, FlowVisor acts as a net-
work virtualization layer (more commonly called a hypervisor)
interposed between the CP and DP to provide control isola-
tion among network resources (e.g., link bandwidth, topology
and switch CPUs), flow tables and OpenFlow control channels
to control the access of different tenants’ controllers to the
switches. Slicing provides isolation to allow multiple poten-
tially competing logical networks to share the same network
resources, although rule-level conflicts on the DP are still
not effectively resolved due to poor rule conflict detection,
as discussed in Section V-B1.

Koponen et al. [26] implemented a network hypervisor
(NVP) with the goal of serving a complementary role when
applied together with mature computing hypervisors in modern
multi-tenant data centers. Similar to computing hypervisors,
it provides abstractions of the network resources using log-
ical data paths in an overlay network implemented with
OpenvSwitch (OVS) to allow for the creation, configuration
and management of independent overlay networks for multi-
ple tenants. The logical data paths have the same configuration
models as the physical data paths and can be automatically

installed into associated OVSs and connected to the physical
network through network tunnels by NVP. By means of such
an overlay network, packet forwarding can be implemented in
the logical network without any changes to the physical net-
work among the servers, which simply needs to ensure the
connectivity among servers.

However, the two virtualization tools discussed above
require the interposition of a hypervisor between the controller
and the switches, which may introduce latency and errors.
Splendid isolation [168] implements a language-level virtu-
alization whereby network slices are directly specified by a
programming language. Splendid isolation defines a network
slice as consisting of three ingredients: a topology, a map-
ping (the topological relationship between the slice and the
underlying network) and predicates (one for each port of the
edge switches in the slice; these predicates specify access per-
missions for packets). Unlike a network hypervisor, Splendid
isolation imposes a static isolation that allows different pro-
grams to be associated with different slices, which will then
be translated into a global configuration for the whole net-
work. By providing such a slice abstraction, it can simplify the
implementation of traffic isolation and support multiple con-
trol programs without harmful interference. In addition, the
high verifiability of language abstractions has come to be rec-
ognized as an advantage of slice abstraction because it allows
a specific isolation implementation to be verified with formal
verification tools.

2) Policy Composition: Although virtualization-based iso-
lation techniques can enable tenant isolation based on network
slices, they cannot address conflicts among multiple apps
processing the same traffic, which may arise even in the single-
tenant scenario. In fact, such hypervisors may be invalid in
this situation since they can provide only slice-level isola-
tion. Policy composition offers a different method of resolving
conflicts, in which policies from different apps with various
purposes are combined into one large policy.

To compose policies, three composition operators have been
developed: parallel (+) [24], sequential (�) [48] and override
(�) [169], [170], as shown in Fig. 5. Here, we use an example
given in [169] and [170] to introduce these three composition
operators. This example consists of three modules, namely,

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 375

Fig. 5. Parallel, sequential and override composition [48], [169].

(Monitor, Route and Load Balance), each with different poli-
cies. Through parallel composition, network programmers can
set different policies to be performed simultaneously, as indi-
cated by the operator “+”; in this case, the overlapping match
fields of the different rules are combined, and their actions are
concatenated together. The override operator “�” can also be
used to combine conflicting policies, but it overrides the prior-
ity settings of the rules such that one module is always valid.
For example, override composition can be used to specify that
incoming packets should be processed by Route only when
Monitor has failed, as shown in Fig. 5. As an alternative to
the direct removal of overlapping, some modules can be com-
bined sequentially in an order specified by the programmer
with the sequential operator “�”, which indicates that incom-
ing packets will be processed by the first policy (e.g., Load
Balance) and that the outputs will be then processed by the
second policy (e.g., Route).

These operators have been widely implemented in various
systems. Frenetic [24] and Pyretic [48] are domain-specific
programming languages that provide a language-level hypervi-
sor (more commonly called a compiler) that translates policies
into OpenFlow rules for programming networks with compo-
sition operators. These composition operators are also applied
in NetKat [171] to combine arbitrary forwarding policies
with access control (ACL). Override composition was pro-
posed in [169] and [170]. STN [169] is a distributed SDN
CP that extends Pyretic to include the override operator and
aims to solve conflicts among concurrent policy updates.
RuleTris [170], [172] has been proposed to eliminate unnec-
essary priority updates in the high-level program compiler and
supports policy composition.

In contrast to the Frenetic hypervisor, FlowBricks [173] and
Compositional Hypervisor [174] provide an imperative inter-
face with parallel and sequential composition options to allow
all controllers (each consisting of individual apps) to directly
process standard OpenFlow messages and generate policies,
which are then compiled into a single policy. This approach
can ensure the scalability of such policies for application
in various SDN controllers. Compositional Hypervisor [174]
has been extended to CoVisor [175], which offers perfor-
mance improvements in terms of rule composition, e.g., the
introduction of override composition. Both Compositional
Hypervisor and CoVisor can allow any controller to update
the network during run time by implementing the incremental
composition of rules from different controllers based on the
recalculation and rewriting of rule priorities. In addition to
policy composition, additional fault tolerance mechanisms for

controller failures or switch failures are also implemented in
CoVisor [175], whereby the administrator can define a default
app-dependent policy for each controller to execute corre-
sponding operations when controller failure occurs. To address
switch failures, CoVisor can remove all its rules and notify the
relevant controllers.

The aforementioned policy composition solutions are
efficient; however, they focus only on the composition
of match fields through simple concatenations of actions,
which may result in incorrect behaviors (in the case
of parallel composition) or inefficient compositions (in
the case of sequential composition) [176]. For exam-
ple, if the two rules {push_vlan(1), tcpdst=80
→ fwd(1)} and {dstip=10.0.0.1, tcpdst=80
→ fwd(2)} are combined in parallel, the resulting
rule is {push_vlan(1), tcpdst=80 → fwd(1),
dstip=10.0.0.1, tcpdst=80 → fwd(2)}, which
can forward packets with the appropriately modified IP
destination address or an added VLAN header to port 2.
To address this issue, Pan et al. [176] modeled the process
of packet construction as a graph in which the vertices
and edges represent packets and transformations between
packets defined by actions, respectively, and they generated
the correct actions for policy composition by searching for a
Hamiltonian path in this graph.

PGA [49] is an approach that supports the automatic compo-
sition of independent network policies rather than the manual
composition supported by the aforementioned approaches.
PGA uses a graph-based abstraction to allow network pro-
grammers to specify their policies in the form of directed
graphs in which each vertex represents an endpoint group
(EPG) sharing common properties. PGA then decomposes
these EPGs into a set of disjoint EPGs to identify the overlap-
ping space and automatically recomposes them into a coherent
composed policy (a conflict-free graph) based on verification
with composition constraints. PGA can resolve, or flag, con-
flicts/errors based on the defined composition constraints and
report them to users, possibly with suggested fixes.

3) Module Coordination: For conflict resolution, module
coordination is also an important means of reducing the effect
of policy conflicts. The main idea of this approach is to coor-
dinate any conflicting operations on flow rules or coarser
network resources (e.g., link bandwidth or access control) and
reassign a different priority to each operation based on specific
mechanisms to resolve conflicts.

PANE [177] attempts to provide participatory networks
with a high-level configuration API whereby SDN apps
can autonomously and dynamically invoke network resources
without worrying about conflicts. It incrementally models the
operations (e.g., requests, queries and hints) of authorized apps
by adding their privileges and related flows into a shared tree.
Thus, PANE can constrain the network policies constructed
from the policy tree. An incoming request is first checked
against the shared tree for admission and is then checked
against the policy tree and the physical capabilities of the net-
work using hierarchical flow tables to resolve conflicts. In this
checking pass, the request is incorporated into the two trees,
and OpenFlow rules are installed into the network.

376 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Voting mechanisms for resolving conflicts between different
SDN control modules have been proposed in Corybantic [69]
and Athens [178]. In Corybantic, SDN modules first pro-
pose some topology changes (allocations or placements of
network resources, called proposals), and then, each module
evaluates every current proposal to assign a value to it that
reflects any costs created by unfairness. Then, a global coor-
dinator chooses the best proposal, and any module affected
by the chosen proposal can materialize it directly. However,
this approach places strict demands on each module’s capa-
bility to evaluate proposals. To overcome this issue, Athens
performs a family of evaluations of proposals instead of the
particular evaluations performed in Corybantic. Upon receiv-
ing a new external request, Athens collects the proposals
generated by each controller module, coordinates the family
of voting evaluations in each module, and chooses the win-
ning proposal to be implemented. These approaches are useful
but can impose high overheads and code changes on SDN
modules.

Instead of performing explicit coordination, as in the above
two approaches, Statesman [25] achieves a different means
of dynamically resolving conflicts by loosening the coupling
between the modules and the system. It functions as an arbi-
tration system between the apps and the SDN controllers to
prevent conflicts and invariant violations. Statesman examines
the applicability of state changes proposed by apps. Then, it
merges all proposed changes into one target change by detect-
ing conflicts among them (considering the dependencies on
the network states) and resolving these conflicts with a last-
writer-wins or priority-based locking mechanism. In addition
to resolving conflicts, Statesman also checks for invariant vio-
lations by comparing the observed and target states against a
network graph. This approach is beneficial for resolving con-
flicts at the network resource level. However, when a new app
emerges, it may necessary to modify or even rewrite the apps
or their coordination system.

Volpano et al. [93] addressed the issue of resource conflict
detection and resolution using formal verification techniques.
In their approach, each network control function acting on
network resources is modeled as an FSM. Based on these
FSMs, the intersections between controller functions can be
identified to generate a combination of machines that can be
deployed in the DP without conflicts. This approach enables
the materialization of multiple proposals simultaneously rather
than only the winning proposal, as in Corybantic and Athens,
or of proposals in a specific order, as in Statesman.

4) Summary: Three different conflict resolution approaches
have been discussed in this subsection. We summarize these
techniques in Table XII. Network virtualization techniques can
allow multiple tenants to share the same network infrastruc-
ture while also providing failure isolation among these tenants.
Policy composition operators are commonly implemented in
high-level programming languages for SDN, although most
of them require manual decisions by programmers, which is
an error-prone process. Module coordination is an indispens-
able function for SDN controllers that allows multiple apps to
coexist even when there are potential conflicts among them.
These three approaches can be used to resolve conflicts among

Fig. 6. Failover for the DP. Restoration: When there is a link failure, the
switch will ask the controller how to forward the packet. Protection: Backup
paths are preconfigured in the switch for use in the event of link failure without
the need to consult the controller.

tenants or apps to different extents, but all are important for
the evolution of an open SDN ecosystem.

B. Fault Tolerance for Traffic

To ensure network service continuation, providing fault tol-
erance against traffic failures is essential. Network traffic in
SDN-enabled networks involves both data traffic in the DP
and control traffic between the CP and DP. The former is a
basic network service for end points, and the latter is used to
ensure normal network management. In this subsection, fault
tolerance for network traffic is introduced from two perspec-
tives: fault tolerance for data traffic (Section VII-B1) and for
control traffic (Section VII-B2).

1) Fault Tolerance for Data Traffic: Link failures are the
main reason for an unavailable DP. To address this issue,
the failover mechanism, which is the process of choosing
other paths on which to continue forwarding network traffic
when a link failure occurs, has been developed. Traditionally,
the failover mechanism is implemented by providing redun-
dant links for network traffic, which can be achieved through
persistent traffic mirroring and the custom configuration
of individual forwarding devices. With the emergence of
SDN/OpenFlow, more flexible failover mechanisms have been
proposed. These mechanisms can be divided into two types,
namely, restoration and protection, as shown in Fig. 6.

a) Restoration: In SDN networks, when a link failure
occurs, the switch can send a port status message to the
SDN controller, and the controller will recompute a new path
for the affected network flows and move them to this new
path by reinstalling the necessary flow rules in the switch.
This process is known as restoration failover, and it benefits
from SDN programmability. CORONET [179] is a restoration
failover technique that uses the controller to replan the links for
affected traffic. There are four components in CORONET, each
responsible for a specific task: the topology discovery mod-
ule periodically collects network topology information with
which to construct a view of the latest global topology; the
route planning module uses Dijkstra’s algorithm to calculate
a routing path as a backup path in the case of link failure; the
VLAN switch configuration module configures the switch port
with a VLAN ID by means of an OpenFlow API to enforce

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 377

TABLE XII
CONFLICT RESOLUTION

this routing path; and the traffic assignment module allocates
the traffic from the host to the corresponding routing path.

Since CORONET can calculate new paths from a global
view of the entire network via disjoint path calculation algo-
rithms, it can achieve optimal resource utilization. However,
choosing new paths on the fly may result in unacceptable
recovery times. A survey [180] has shown that due to the inef-
ficient software and fundamental traits of switch hardware, the
installation of new rules suffers from surprisingly high latency,
e.g., 8 ms per packet on average in the in-bound mode and
3 ms and 30 ms per rule for insertion and modification, respec-
tively, in the out-bound mode. When combined with the delay
introduced by the path calculation algorithms, these latencies
may cause network recovery times to increase to unacceptable
levels [181] and result in difficulties in satisfying the carrier-
grade recovery requirement of 50 ms [182]. Furthermore, the
computational and memory resources required by the con-
troller for handling recovery messages may be too high to
permit scalability.

To reduce the time needed for path calculation,
Li et al. [183] implemented a locally optimal approach
for migrating the affected flows. This approach uses the
connectivity matrix table and traffic statistic table in the failed
link switch instead of the statuses of all paths to find a new
path. It can find a locally optimal path and reroute a flow
within 36 ms, which meets the carrier-grade requirement.

b) Protection: In protection failover, the backup paths
are predefined and reserved before a link failure occurs, which
can lead to a faster switching time. To implement this mech-
anism, introduced in version 1.1, the OpenFlow specification
uses group tables to permit the predefinition of failure recov-
ery policies on devices and supports forwarding behaviors

that depend on the local states of switches [184] without the
need for path calculations performed by controllers. The group
table also contains entries consisting of the group identifier,
group type, and counters and an ordered list of action buckets.
Each bucket contains a set of actions that can apply more
complex packet forwarding semantics (e.g., multipath routing,
fast rerouting, and link aggregation) on packets that cannot
be defined by a flow entry alone [40]. Once the group type
has been set to fast failover, the switch forwards packets only
in accordance with the first live action bucket, whose live-
ness for the associated parameters (a port or another flow
group) is monitored through end-to-end liveness mechanisms
(e.g., a spanning tree or keepalive mechanism). When the first
bucket is down, the next live bucket is automatically chosen
to continue traffic forwarding without consulting controllers.
Similar to common flow entries, these group entries can also
be installed by the controller, and network programmers can
add their own failure recovery policies to the group tables
by installing group entries. Protection failover possesses the
advantages of lower reaction latencies, faster network restora-
tion and lower load on the controllers, and it has been shown
to be a more suitable recovery mechanism than restoration for
traffic tolerance [185].

Since the fast failover tables are preplanned and the
liveness monitoring is limited to local network elements,
this mechanism can react only to local failures and may
lead to the use of nonoptimal backup paths [186], [187].
Sahri and Okamura [186] combined the advantages of con-
troller recomputing and fast failover groups. When a failure
occurs, the affected flows will be forwarded via precomputed
backup paths until a new optimal path based on the current
network state has been recomputed and deployed in the switch

378 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

by the controller. A buffer is also implemented in the switch to
minimize the effects of switching traffic among different paths.
This approach can ensure the optimal utilization of network
links, but it can also lead to high overhead in both controllers
and switches. In contrast, DFRS [187] is a declarative failure
recovery system that allows network operators to choose either
failover protection or failover restoration independently for dif-
ferent flows. Its core idea is that when a failure occurs, backup
paths will be used for delay-sensitive flows, whereas delay-
tolerant flows will be forwarded to the controller. By providing
a set of high-level interfaces based on Scala DSL, DFRS can
serve as a feasible and low-memory-overhead recovery system.

Another issue in failover protection is that the number of
false positives for failure detection cannot be reduced since
the liveness mechanisms, e.g., spanning tree or keepalive
mechanisms, are managed by code outside of the OpenFlow
specification [40]. The detection times of these protocols
remain slow, and their accuracy is low. To reduce the detec-
tion time and the number of false positives, the Loss of Signal
(LOS) and Bidirectional Forwarding Detection (BFD) proto-
cols [188] have been implemented to work with OpenFlow
fast failover groups [189], [190]. LOS can detect failures of
a signal or connection due to a number of causes, e.g., a lost
connection to the other end, an improper network configura-
tion, or a bad cable connected to a network device. The BFD
protocol can detect a link failure by detecting link loss by
means of frequent control-echo sessions between each link.
When per-link BFD or per-port LOS is used as the liveness
mechanism, the time of failure detection for fast failover can
be reduced to a sub-50 ms detection window.

The memory resource overhead is also a challenge in
failover protection since it is necessary to deploy additional
rules in switches. However, the memory in switches is often
limited and expensive, especially for TCAM-based switches.
To address this issue, Stephens et al. [191] first proposed a
flow table compression algorithm to decrease the number of
TCAM states consumed by forwarding table entries. However,
this algorithm can only compress table entries with the same
out port and the same modification actions. To improve the
compression ratio, these authors further introduced the con-
cept of compression-aware routing to reduce the number of
flow table states without impacting resilience or performance.
The authors then combined these techniques with Plinko, a
new forwarding model in which the same action is used for
every packet, to realize fast failover for multiple failures via
forwarding table compression.

To facilitate the flexible deployment of failover policies,
SDN programmability offers the possibility of integrating
these policies into network programs. FatTire [95] is a
high-level declarative programming language that attempts to
implement this idea by allowing programmers to specify the
abstractions of their failover policies. FatTire is a new pro-
gramming technique based on regular expressions whereby
programmers’ failover requirements can be declaratively spec-
ified by specifying legal network paths. The specified policy
is then compiled into low-level OpenFlow group entries. With
FatTire, various failover policies (e.g., the modulo strategy,
depth-first search strategy, and breadth-first search strategy

in [192]) can be implemented more efficiently with high cor-
rectness and robustness. However, for now, this language can
only deal with link-level failures; switch-level fault tolerance
remains to be addressed.

c) Discussion: Although protection failover with the
OpenFlow fast failover mechanism has been more widely
studied than restoration failover has, the protection approach
suffers from the two main drawbacks of nonoptimal path
choice and resource utilization, especially for large-scale net-
works. Combining these two failover approaches is a good
choice for achieving a balance between response time and
path choice, as demonstrated by DFRS [187]. In addition to
providing failure recovery for the DP, OpenFlow fast failover
groups can also be used to implement several troubleshoot-
ing functions, e.g., snapshot collection, anycast specification,
blackhole identification, and critical node detection [193].

2) Fault Tolerance for Control Traffic: In addition to fault
tolerance for data traffic, providing fault tolerance mecha-
nisms for control traffic (i.e., data traffic between controllers
and switches) is crucial since a disconnection between a
controller and switches may disable normal network process-
ing. The control-switch channel can be implemented in two
modes: in-band and out-band. In in-band control networks,
the control traffic and data traffic are combined and share
the same network resources. In the out-band mode, these two
types of traffic are separated and implemented in different
networks. Although an out-band network has obvious advan-
tages in terms of reliability and security compared with an
in-band network, building two independent networks is often
too expensive and not feasible for large-scale networks [194].
Thus, in-band network control has become the preferred solu-
tion for deploying SDN networks. Related to the protection
of control traffic to guarantee the reliability of networks, two
issues have emerged: the protection of the control paths from
switches and the placement of controllers to maximize con-
nection reliability. In this section, we discuss fault tolerance
mechanisms for control traffic failures due to link failures; the
problem of controller placement will be discussed in the next
Section VII-C.

Sharma et al. [194], [195] studied two failover mechanisms
(i.e., restoration and protection) for control traffic in in-band
SDN networks. In the restoration mechanism, all switches are
preconfigured with a one-hop restoration path for the working
path for control traffic. The control messages from a switch
can be forwarded only by the neighbor on the working path.
When a failure occurs, the controllers will collect the states
of the other neighbors of the faulty switch and compute a
new path on the restoration path to recover the control traf-
fic affected by the faulty switch. However, this approach may
result in considerable traffic loss due to the time consumed
for restoration. Protection for control traffic was therefore also
studied, with an approach similar to the protection mechanism
for data traffic that is implemented by means of OpenFlow
group tables. When a failure occurs, the switch can automati-
cally forward control traffic over the backup path indicated by
the group table without consulting the controller. These authors
showed that the protection mechanism for control traffic can
also satisfy the carrier-grade recovery requirement.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 379

Hu et al. [196] and Obadia et al. [197] considered the prob-
lem of control traffic tolerance for a scenario with multiple
controllers, rather than a single-controller scenario, as con-
sidered in [194], [195], and [198]. In the multiple-controller
scenario, the network is divided into several domains, with
each being controlled mainly by one of the controllers.
Hu et al. [196] implemented a control traffic protection mecha-
nism based on a combination of local rerouting protection and
constrained reverse forwarding protection. Whereas the local
rerouting protection mechanism attempts to forward control
traffic to a neighboring switch during link failure, the reverse
forwarding protection mechanism attempts to forward control
traffic back to the downstream switch. For each link failure,
one of these two mechanisms is chosen for reconnecting to
the nearest controller, with the objective of recovering control
traffic with the minimum number of hops to the controller.

Obadia et al. [197] focused on control traffic failover for
distributed SDN controllers in different control domains. The
question of how to quickly reconnect the switches in an
invalid domain (called orphan switches) to other controllers
was studied on the basis of two failover mechanisms: greedy
failover and prepartitioning failover. In greedy failover, when
a controller fails, each switch orphaned by that controller will
automatically broadcast specific link layer discovery protocol
(LLDP) messages, which are necessary to modify the switch
software, and the controllers around these orphan switches
will progressively take them over into their own domains.
In contrast, in prepartitioning failover, the failed controller is
responsible for choosing and informing its neighbors of which
switches they should take over. This mechanism does not need
to modify switches and can be fully compliant with OpenFlow;
however, the coordination among controllers in the case of
failure is an error-prone process.

C. Infrastructure Planning

The stability of the infrastructure determines the reliabil-
ity of the upper services. Designing the infrastructure to
provide fault tolerance is essential for improving the reliabil-
ity of SDN networks. In this section, infrastructure planning
is discussed from two perspectives: component redundancy
(Section VII-C1) and controller placement (Section VII-C2).

1) Component Redundancy: Since the controller is the
brain of an SDN network, guaranteeing its availability and sur-
vivability is essential. Once the controller is down, the network
elements will be unavailable for normal network requests. An
effective solution to this single point of failure is to use mul-
tiple controllers regardless of clustering or backup [199]. If
the primary controller breaks, the slave controllers or backup
controllers can take over the management of the whole net-
work, which can allow the network to continue operating. In
the multiple-controller scenario, a distributed data store with
a synchronization mechanism is adopted to ensure the state
consistency among these controllers to ensure the reliability
of the whole network [199].

Li et al. [200] used a state machine replication mecha-
nism implemented with the Byzantine fault tolerance (BFT)
mechanism to ensure smooth network functioning. In this

mechanism, each switch is connected to multiple controllers; if
the primary controller fails, the next primary controller will be
selected from among the backup controllers through a proper
election algorithm. They also proposed the Requirement First
Assignment algorithm to solve the controller assignment prob-
lem in fault-tolerant SDN. Similarly, Botelho et al. [32]
employed the Paxos algorithm to implement a data store in the
form of a replicated state machine (RSM), which was used to
integrate fault detection and leader election algorithms without
the need for additional coordination services. In their archi-
tecture, the controllers maintain a local data cache to reduce
the read frequency of the RSM.

Although such a distributed storage system and RSM
can be used to replicate durable states, the consistency
between the controller and switches cannot be ensured. Thus,
Ravana [201], a fault-tolerant CP, attempts not only to replicate
the states of the controllers but also to ensure the consistency
of the external switch states. The RSM in Ravana is extended
to ensure control state replication, and an extension of the
OpenFlow interface is adopted to ensure that each transac-
tion can be executed in an ordered manner and exactly once
across the switches. The main issue of concern is how to han-
dle the switch consistency during controller failures based on
maintaining consistent controller states.

2) Controller Placement: Resource redundancy is useful
for enhancing CP survivability; however, it may not be suffi-
cient to provide fault tolerance against both network disruption
and controller overload and can cause additional problems
such as route flapping and prolonged route convergence
times. To address these issues, the problem of finding the
optimal controller placement has received significant atten-
tion [202]–[209]. The controller placement problem has two
aspects: the number and locations of controllers [210]. The
first aspect concerns how many controllers need to be deployed
to implement a reliable and resilient network. The second
aspect concerns where these controllers should be deployed,
which affects several important metrics, e.g., the resilience
of control traffic, the quality of network services, and con-
troller performance. Finding the optimal controller placement
for specific metrics is studied in this subsection.

Several studies have focused on intelligent controller place-
ment according to various metrics to achieve improved design
and performance of SDN networks. Zhang et al. [202] focused
on a metric concerning the invalidation of nodes, links,
and connectivity between controllers and switches. They for-
mulated the placement problem in the SDN network and
proposed a min-cut-based graph partitioning algorithm for
controller placement to maximize the resilience of the network.
Hu et al. [203] considered a metric reflecting the expected per-
centage of control path loss. They proposed several controller
placement algorithms to minimize this metric, e.g., random
placement, l-w-greedy placement, and simulated annealing.
Guo and Bhattacharya [204] leveraged an interdependence
graph to analyze the cascading behavior of a failure, with the
steady state used to define a resilience metric for controller
placement, and applied a greedy algorithm to partition the net-
work into a set of subnetworks and a selection algorithm to
choose the controller position in each subnetwork.

380 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

The above approaches are useful but may have some lim-
itations, as analyzed by [205]: they often use single paths
to model the connections between controllers and switches,
handle traffic load changes on demand, and overlook the
effects of predefined failover mechanisms. To address these
issues, Survivor [205] has been proposed as a controller place-
ment strategy that considers path diversity, thus achieving
capacity awareness in controller placement and improving the
performance of failover mechanisms.

Bari et al. [206] attempted to implement dynamic controller
provisioning rather than offline planning by minimizing the
metrics of flow setup time and communication overhead. To
this end, they formulated the dynamic controller provisioning
problem (DCPP) as an integer linear program (ILP), which
they solved with two heuristic algorithms to dynamically
adjust the number and locations of controllers according to the
current number of flows. Ros and Ruiz [207] also proposed
a heuristic algorithm for solving the fault-tolerant controller
placement problem, but with the objective of achieving at least
five-nines southbound reliability.

These ILP- and heuristic-based controller placement meth-
ods can address the resilience problem only in terms of specific
metrics and not for all objectives simultaneously. POCO [208]
is a framework for controller placement that considers a trade-
off among several performance and resilience metrics, e.g., the
latency between nodes and controllers, resilience and load bal-
ancing. A Pareto-based optimal controller placement approach
that can evaluate the entire solution space and provide a com-
prehensive placement based on all objectives is implemented.
This solution has been extended with a heuristic approach
(Pareto simulated annealing) to achieve a trade-off between
calculation time and placement accuracy for supporting large-
scale and dynamic WANs, as reported in [209].

D. Summary

In this section, we have discussed fault tolerance tech-
niques for SDN from three perspectives: conflict resolution,
which enables multiple tenants with various independent apps
to coexist on the same network; fault tolerance for net-
work traffic, which provides fault-tolerance capabilities for
both data traffic and control traffic in SDN-enabled net-
works; and infrastructure planning, which focuses on how
to design infrastructure deployments to satisfy reliability and
other requirements. The main conflict resolution approaches
are summarized in Table XII. We further summarize the fault
tolerance techniques for traffic and infrastructure planning in
Table XIII to conclude this section.

VIII. FAULT MANAGEMENT GAP ANALYSIS

While the academic literature indicates that researchers have
comprehensively addressed SDN fault management problems,
the extent of implementation of fault management in exist-
ing SDN-related frameworks remains unknown. Thus, we
survey fault management work in popular SDN-related frame-
works and attempt to analyze the gap in fault management
between academia and industry. We survey open-source SDN
controllers in Section VIII-A. Many SDN controllers have

been developed since the proposal of SDN [6]. Some SDN
controllers, e.g., OpenDaylight (ODL) [220], have evolved
into SDN ecosystems. Numerous projects and new features
are continuously being added in the controller community.
These projects are integrated with core projects to function
as complete SDN controllers. Our survey of SDN controllers
focuses on the fault-management-related projects (summarized
in Table XIV) in SDN controller ecosystems. In addition,
we analyze the gap between solutions developed in an aca-
demic research context and practical deployments for SDN
fault management.

A. Current SDN Controller Platforms

The first SDN controller, NOX [221], was introduced
together with OpenFlow in 2008 [6]. Since then, many SDN
controllers, e.g., POX [222], ONIX [223], Beacon [224],
Floodlight [225], ODL, and ONOS [226], have been devel-
oped in both academia and industry. However, some of these
controllers are no longer being actively maintained. The first
SDN controller, NOX, is no longer under active development
due to its difficulty in scaling, while its Python sibling, POX,
remains in limited use by the research community. The Beacon
controller was popular in 2010 but was replaced by Floodlight
in 2013. Only a few controllers are currently under active
development. We present a brief survey of some important
development communities and commercial SDN controllers
in Table XV. We find that while some companies build their
own proprietary controllers, more than half of them build con-
trollers based on open-source software, e.g., ODL. Based on
this survey, we select controllers that are still under active
development, including ODL, ONOS and OpenContrail, as
representatives for evaluation.

1) OpenDaylight: ODL is currently the largest open-source
SDN controller. It is a collaborative open-source project hosted
by the Linux Foundation. The members of the ODL commu-
nity include Cisco, Ericsson, Intel, Brocade, Google, Huawei
and other Internet and telecommunication companies. ODL
was launched in February 2013 and was announced as a
community-led project in April 2013. Currently, ODL has
grown to be the largest open-source SDN controller. According
to its project list,8 there are 65 approved projects, including
6 kernel projects, 18 protocol and service projects, 33 appli-
cation projects and 8 support projects. In a survey of each
of these projects, we find three projects related to fault
management: Cardinal [211], TSDR [213] and Centinel [212].

Cardinal [211] was proposed to provide monitoring-as-a-
service in ODL by serving as a monitoring proxy for the
centralized network management system (NMS), as shown in
Fig. 7. In legacy networks, the NMS is a centralized system
that monitors and manages devices throughout the network
via standard protocols, e.g., SNMP. With the advent of SDN,
the need for monitoring has become a whole-network issue,
including controllers, devices, and deployed features. Cardinal
collects statistics from devices and deployed feature statistics
from other services in the controller, and it reports these data

8OpenDaylight projects - https://wiki.opendaylight.org/view/Project
_Proposals.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 381

TABLE XIII
FAULT TOLERANCE FOR TRAFFIC AND INFRASTRUCTURE

to the NMS above. Currently, Cardinal Boron is only able to
provide monitoring and basic traps.

The Time Series Data Repository (TSDR) [213] is a
distributed time-series data collector that collects data via stan-
dard protocols, e.g., OpenFlow counters, and sinks them into a
distributed database, e.g., HBase, with timestamps. Currently,
TSDR is able to collect controller metrics, NetFlow statis-
tics, OpenFlow statistics, sFlow statistics, SNMP statistics and
SysLog statistics. Although TSDR can be used to improve
the scalability and performance of ODL controllers, its pri-
mary objective is to help to create an intelligent and “smart”
controller.

Centinel [212] is another project in ODL, also focusing on
streaming data. It is a distributed framework for collecting,
aggregating and sinking streaming data. It enables SDN con-
trollers to receive events from multiple streaming sources, e.g.,
SysLog, and execute batch processing or real-time analytics.
Centinel has some overlap with TSDR in the data collection
aspect, as shown in Fig. 8. TSDR and Centinel both provide

network data collection and analytics. The collected data can
be used to monitor the status of the SDN network or for further
potential fault analysis.

2) ONOS: The Open Network Operating System (ONOS)
is a carrier-grade SDN network operating system designed
to provide high availability, performance and scalability.
The members of the ONOS community include AT&T,
Cisco, Ericsson, Google, Huawei, Samsung, and Verizon.
In December 2014, the Open Networking Lab, along with
its industry partners, released the ONOS source code to
the open-source community. In October 2015, ONOS joined
the Linux Foundation as a collaborative project. The first
released version was Avocet. ONOS is now on its sixth ver-
sion: Falcon. There were 30 projects as of November 2016,
including core projects, incubation projects and projects in pro-
posal. Five of these projects are related to fault management:
OPEN-TAM [214], Fault Management [215], Composition
Mode [216], Network TroubleShooting Module [217] and
Network Artificial Intelligence [218].

382 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

TABLE XIV
FAULT-MANAGEMENT-RELATED PROJECTS IN SDN

TABLE XV
SDN CONTROLLERS

Fig. 7. OpenDaylight Cardinal. It enables the monitoring of an SDN network
by the NMS.

OPEN-TAM [214] is a traffic analysis and monitoring
project that enables the analysis and monitoring of various
types of network traffic. Network traffic monitoring is a func-
tion that is crucial for various other functions, including traffic
engineering and fault management. OPEN-TAM has two sub-
systems: the Adaptive Flow Sampling Service and the Open
Selective-DPI Service. The Adaptive Flow Sampling Service
can adaptively sample flow statistics to overcome the prob-
lems of performance degradation and low accuracy in current
FlowRule services. The Open Selective-DPI Service can fil-
ter users’ data traffic in the DP and classify it with app-level
granularity using open-source DPI software.

Fault Management [215] is intended to support alarms from
network devices. When a fault or event occurs, a network

Fig. 8. OpenDaylight Centinel. A distributed, reliable framework for effi-
ciently collecting, aggregating and sinking streaming data across a persistence
database and stream analyzers.

device typically sends a notification to network operators via
certain protocols. Fault Management is designed to receive
such notifications or alarms, store them, and make them exter-
nally visible. There are two components in Fault Management:
the Protocol Provider (e.g., SNMP or NETCONF) and the
Fault Management Application (which stores and displays
notifications or alarms).

Composition Mode [216] allows ONOS to run multiple apps
concurrently and automatically resolves flow conflicts. It sup-
ports the parallel, sequential and override composition opera-
tors, as described in Section VII-A2. Composition Mode, as
shown in Fig. 9, has 4 components: Policy Interface Definition,
FlowRuleService Implementation, Composition Library and

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 383

Fig. 9. ONOS Composition Mode. It can resolve conflicts among different
apps using three composition operators (as illustrated in Fig. 5).

Switch Rule Installation. Policy Interface Definition interprets
the composition policies defined by network operators and
configures ONOS to apply these policies. FlowRuleService
Implementation maintains flow tables for each switch and
is responsible for the details of composition. Composition
Library is a stateless library that has access to apps, interme-
diate flow tables and policies. Switch Rule Installation installs
OpenFlow rules into physical switches.

Two additional fault-management-related projects, Network
Trouble Shooting Module [217] and Network Artificial
Intelligence [218], have also been proposed in ONOS. They
are in their initial stages. Network Trouble Shooting Module
aims to improve the reliability of SDN, mainly by solving
the problems of routing loops, routing blackholes and app
conflicts, as indicated in the proposal. However, at present,
only two algorithms have been developed: the Routing Loop
Detection Algorithm and the Routing Black Hole Detection
Algorithm. The app conflict problem remains to be addressed.
The Network Artificial Intelligence project in ONOS is similar
to TSDR and Centinel in OpenDaylight and utilizes Apache
Flume and Kafka for streaming data collection and analyt-
ics. However, no detailed information about this project is
available.

3) OpenContrail: OpenContrail is an open-source network
virtualization platform for the cloud that supports secure multi-
tenancy and enables dynamic service chaining in private,
public and hybrid clouds using SDN and NFV techniques.
Juniper acquired this technology in 2012 and began building
on its SDN capabilities. It was first released in September 2013
and is mainly supported by Juniper.

OpenContrail includes the Analytics Node project [219] for
data collection and analytics, as shown in Fig. 10. Analytics
Node uses an XML-based protocol called Sandesh for high-
volume data collection. It collects asynchronous messages
from other nodes, such as logs, events and traces. It can
also collect synchronous messages by sending requests for
the collection of specific operational states from other nodes.
All information is persistently stored in a NoSQL database.
Analytics Node also provides a northbound REST API for
other analytics apps.

B. Gap Analysis

Although a large number of fault management solutions
have been proposed and evaluated in academic studies, we find

Fig. 10. OpenContrail Analytics Node. An analytical framework for the
OpenContrail system.

that few of them have been applied in practical commercial
deployments, and the projects listed in Table XIV are still
in their initial stages, with limited fault management capa-
bilities. Most of the projects in Table XIV enable only the
monitoring of SDN networks and the collection of statisti-
cal data; some projects, such as Network TroubleShooting
Module and Network Artificial Intelligence in ONOS, cannot
be directly applied. Leveraging the centralized nature of SDN
to collect statistical data for network maintenance is highly
feasible since SDN can simplify data collection by virtue of its
global overview of the network. In addition, the programma-
bility of SDN allows network operators to design automated
fault diagnosis and repair solutions, which can relieve opera-
tors of the task of having to analyze large amounts of data.
However, as found in our survey, applying such features in
practical network deployments is currently still quite difficult.
In this subsection, we attempt to identify the reasons for this
gap between academic research and practical deployments in
terms of the state of development of SDN fault management
techniques from two perspectives.

1) Issues in Academic Research:
a) Complexity of the production network environ-

ment: The main issue hindering the practical application of
many solutions developed in an academic research context is
that the experimental environments in which they have been
tested are often small in scale, with a limited amount of equip-
ment, and most solutions are actually simulated. In addition,
many solutions depend to some extent on certain assump-
tions, such as a fixed network topology, a fault-free DP in the
case of control-message-based configuration verification, and
unlimited hardware resources. However, practical operating
environments are diverse and complex since practical networks
often need to support many network services, e.g., streaming
media, IP voice, L2/L3 VPNs, 3GPP mobile backhaul and
core transmission, and cloud services. Some unexpected cases
may exist that cannot be extensively considered when network
vendors are designing fault management mechanisms for their
productions. Therefore, the simple environments and strong
assumptions considered in academic experiments often make
many solutions difficult to apply in production environments.

b) Diversity of network devices: Another issue is that
many academic research solutions have been proposed only

384 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

for pure SDN networks based on a single protocol. However,
many practical networks need to include legacy or proprietary
devices, which may be beyond the control of SDN. Even
in a pure SDN network, various protocols (e.g., OpenFlow,
BGP and SNMP) may be used simultaneously to man-
age the DP. These networks are often heterogeneous and
contain various devices. For example, in many cloud data
centers, the virtual switches for virtual machines are con-
trolled via SDN technology with OpenFlow and OVSDB,
whereas the physical switches connecting servers still use
CLI solutions, which are configured by SDN controllers
or operators. Furthermore, even in a network based on a
single protocol, interoperability problems arise among dif-
ferent versions of OpenFlow; e.g., OpenFlow 1.0 is not
fully compatible with OpenFlow 1.3. The hybrid network
paradigm, in which SDN and traditional network devices
are integrated in a single network, is expected to persist
for a very long time. Thus, providing a solution for inter-
operability testing and management to address the diversity
of network devices will be necessary for future network
development [55], [234].

2) Issues in Practical Deployments:
a) Hindrances to new network implementations: The

slow adoption of SDN is one of the factors that is limit-
ing the development of related fault management techniques
in practical networks. While SDN has seen many successful
deployments, it still suffers from many issues preventing its
widespread adoption [13], e.g., issues of reliability, security,
performance and scalability. For example, when considering
the implementation of SDN networks, network vendors and
users first need to consider the benefits and the necessity
of updating their products [13]. The benefits are the cost
savings of implementing new technologies, and the neces-
sity to update concerns how and why the existing products
are insufficient. In addition, the process of updating prod-
ucts often suffers from a long cycle time since a wide
variety of updates may be needed concerning, e.g., compat-
ibility with old devices, the reliability and security of the
new software system, and infrastructure maintenance. These
factors are among the major hindrances to the adoption
of SDN and the development of related fault management
projects.

b) Disunity of architecture and interfaces: The hierar-
chical SDN architecture and the interfaces between different
planes have yet to be effectively unified and standard-
ized [234], which complicates the development of associated
projects, including fault management. First, with the increas-
ing requirements for and sizes of networks, the SDN CP
must be scaled in terms of horizontal expansion and verti-
cal stratification. This has resulted in various hierarchical CP
architectures in different network domains. For example, while
a CP with a single-layer architecture is used in data centers, a
CP with a multilayer architecture is needed for mobility core
networks [235]. Second, the SDN SBI and NBI have become
diversified, and there is also no consensus on the development
of EBIs/WBIs. Therefore, the SDN architecture and its inter-
faces will require further study and clarity for standardization
and unification. This will allow rapid development of related

technologies, which can, in turn, promote the development of
SDN itself.

c) Changes in management patterns: The emergence of
SDN has affected both network architectures and network
management patterns. A single SDN network involves multiple
vendors (e.g., app vendors, controller vendors and device ven-
dors), and the network management pattern must coordinate
the products from all these vendors. However, this is chal-
lenging to achieve [234], especially with regard to network
reliability. Fault management solutions need to address not
only issues of horizontal incompatibility and interoperability
in the same plane (e.g., the interoperability among network
devices, as discussed above) but also issues of vertical (i.e.,
cross-layer) collaboration, such as cross-layer diagnosis, as
addressed in [92]. We believe that designing new techniques to
address the interoperability problems that arise in multivendor
integration is highly necessary for reliability, and we also sug-
gest that providing an incremental plan for SDN deployment
(such as those considered in [236] and [237]) is another effi-
cient approach for relieving interoperability issues, which can
balance the benefit of replacing legacy devices with the cost
of addressing interoperability issues when integrating multiple
network techniques.

d) Changes in certifications: The last, but no less
important, source of practical hindrances to fault manage-
ment is the changes in network certifications caused by
the emergence of SDN. Since the software-centric nature
of SDN can fundamentally alter network engineering and
management, network engineers must know not only how
to configure networks but also, and more importantly, how
to program them. To deploy a reliable SDN network, net-
work engineers must become familiar with more elements
(e.g., controllers, apps, programming languages, and new
switch architectures), in addition to command-line interfaces
(CLIs), and must acquire more skills (e.g., troubleshooting,
basic software tool debugging and automation), based on
this new understanding of networks. Most network engineers
will require retraining for this purpose. In addition, current
SDN certifications for validating the skills of engineering
professionals remain in an imperfect state, and only a few
organizations, e.g., ONF and Cisco, provide such certifica-
tions. Thus, there is a need for more investment in training and
certifications [234].

C. Summary

We have surveyed fault management projects related to
open-source SDN controllers and presented a gap analy-
sis between the solutions that have emerged from aca-
demic research and practical deployments. Unfortunately,
these projects are in their initial stages; some have only simple
implementations, and some even lack detailed proposals. The
development of SDN fault management has been slowed by
the current state of adoption of SDN, and this immaturity of
fault management undermines the reliability of SDN, which,
in turn, affects SDN development. We believe that to push
SDN techniques forward, the industry will need to put greater
effort into SDN fault management.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 385

IX. FUTURE RESEARCH DIRECTIONS

By analyzing and comparing current solutions for SDN fault
management, we have presented a comprehensive study of
SDN reliability issues. However, several issues remain chal-
lenging and will require greater attention in future research.
Thus, we attempt to identify several open challenges and
potential directions for future research in this section.

A. Data Plane Programming

As analyzed in Sections III-A and V-A, most of the thorny
issues regarding fault diagnosis and repair in SDN concern
the DP, and they can have diverse causes, e.g., software bugs,
hardware failures and external interference. Current probe-
based testing solutions [15], [70] for these issues suffer from
a long probe packet generation time, and solutions based on
traffic statistics [73] require the addition of new pipelines in
the switch datapath, which is also an error-prone process.
The emergence of new DP specifications (e.g., P4 and POF)
has inspired device manufacturers to develop new products
that allow network operators to customize the DP and mod-
ify its features at maintenance time as well as at run time.
Recently, much academic research has been conducted on P4-
based fault management [30], [126], [238]–[240], and several
commercial products9 have emerged. Academic experiments
show that P4 can optimize fault management for the DP and
further improve SDN reliability, and commercial products also
strongly prove the performance of P4. Thus, we believe that
the design of more powerful programming protocols for the
SDN DP, including network management, reliability, and secu-
rity, is a promising future direction for SDN development,
and we additionally believe that these DP programming lan-
guages can further upset the ecological balance of the current
networking world and provide greater opportunities for many
white card manufacturers.

B. Diverse Network Protocols

In current SDN frameworks, OpenFlow interfaces are the
most popular type of interfaces for network devices. However,
as SDN has evolved, many weaknesses of OpenFlow (e.g.,
its scalability, security and compatibility) have become ampli-
fied [241], making it difficult for OpenFlow to remain the
only SDN protocol in widespread use. Thus, vendors are using
other protocols, such as NETCONF, OVSDB, MPLS-TP, BGP,
PCEP, ForCES, P4, and POF, to fill the voids in SDN net-
work management capabilities left by OpenFlow or to directly
replace it. These protocols are also used in various combi-
nations, such as OpenFlow and NETCONF or OVSDB, to
manage switches. As this trend has emerged, greater con-
cerns about SDN reliability have also been exposed. This is
because the existence of multiple protocols in an SDN network
makes the DP more diverse and complex, and more com-
plex programs also need to be provided in the CP to support
multiprotocol network management. However, existing fault
management solutions are all focused on networks based on

9One example is Barefoot Tofino (https://barefootnetworks.com/technology/
#tofino).

only one protocol, typically OpenFlow. Thus, we believe that
greater research efforts will be needed to address the diversity
of network protocols used in SDN networks.

C. Complex Software Systems

SDN has come to have a broader meaning, i.e., not sim-
ply CP/DP separation but also automation, virtualization and
programmability. Behind this meaning is the need for com-
plex software systems. In addition to normal network man-
agement, these systems also need to provide many other
functions, such as modular collaboration, distribution, state
synchronization, backup and restoration, and load balancing,
to maintain the whole network. While these complex software
systems require elaborate design, more effort also needs to
be focused on monitoring, testing, evaluating and diagnosing
these systems. However, most existing fault diagnosis solu-
tions [20], [23], [107], [134] do not consider the complexity
of the CP and assume that the controllers are failure-free. Only
works such as [16], [17], and [153] provide solutions for test-
ing and troubleshooting controller software, and we believe
that greater effort is still needed to accelerate the software
development and evolution of SDN controllers.

D. Network Engineer Training

As analyzed in Section VIII-B, network engineers need
retraining to be able to integrate the SDN architecture. This is
especially important for network maintenance. As surveyed
in the preceding sections, many elements are involved in
maintaining an SDN-enabled network, such as newly defined
switches and various software entities, and network engineers
need to know how to monitor and test these elements, log
their states, and detect and localize potential faults throughout
the system. In addition, they need to deploy fault tolerance
mechanisms, including mechanisms for data and control traf-
fic as well as infrastructure planning, on the switches and
controllers. While the declarative programming languages that
have been proposed for this purpose offer effective methods of
simplifying network deployment in terms of both traffic con-
figuration [24] and fault tolerance policies [95], we believe
that greater effort needs to be focused on helping network
engineers to understand SDN and how to deploy networks;
one example of such work can be found in [242], where an
automatic suggestion mechanism for writing test codes is pro-
posed, which can be very useful for inexperienced network
engineers.

E. Scalability

As a logically centralized network architecture, SDN faces
scalability issues [243], [244]. These issues arise from several
causes, including communication delays between the CP and
DP [199], limited computational resources in controllers [244],
and inconsistent data transmission rates [244]. To design a
scalable SDN network architecture, in addition to resolving
these issues, providing reliable software systems and stable
connections between the CP and DP is the most impor-
tant factor to be considered. Additional challenges related
to SDN reliability that concern scalability, such as controller

386 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

failures, the distribution and consistency of controller states,
and infrastructure planning [244], still require further research.

F. Intelligent Network Management

The future of networking lies in network automation,
which is also one of the main premises of SDN. Recently,
there has been a trend of introducing artificial intelligence
(AI) and machine learning (ML) techniques into SDN to
take over network management to achieve network automa-
tion [245], [246]. The logically centralized network control
and the global visibility of the network provided by SDN
allow AI/ML techniques to automatically make and adjust
network decisions. Several academic research works and engi-
neering projects [213], [218], [246] have attempted to provide
such a combination of techniques. In [246], a new network
paradigm based on a combination of SDN and AI/ML, called
Knowledge-Defined Networking, was proposed by several uni-
versities and enterprises, e.g., Broade, HP, Intel, NTT, Cisco,
and UC Berkeley. In this paradigm, a knowledge plane (KP) is
established on top of the SDN architecture and is responsible
for analyzing the network on the basis of the data collected
by the management plane; ML is used to transform these
data into knowledge and to make network decisions based on
this knowledge. Various open-source projects, such as ODL
TSDR [213] and Centinel [212], also provide similar func-
tions of collecting system data from each SDN element and
using ML tools (e.g., Spark) for automatic network manage-
ment. As discussed in [245] and [246], the combination of
SDN and AI/ML truly has the potential to enable automated
network provisioning and management and to make networks
more reliable and secure. We also believe that with greater
effort, the combination of SDN and AI/ML will simplify net-
work implementations to meet various demands and improve
network reliability to an acceptable level for most users.

G. Self-Healing Networks

As discussed in the above section, network automation is
a current trend. In addition to designing intelligent mecha-
nisms to achieve automated network management, designing
self-healing networks to ensure reliability is another impor-
tant direction of research. A self-healing network is a network
that has the ability to perceive incorrect states in its compo-
nents and automatically recover itself to a normal state without
human intervention. Implementing a self-healing mechanism
for networks requires a comprehensive fault management
solution, including an online monitoring system, a fault detec-
tion and localization mechanism for finding faults, a fault
repair and recovery mechanism to restore the network, and
a fault tolerance framework to maintain normal operations.
SDN has enabled this innovation for networks, and several
preliminary attempts, such as integrated fault troubleshoot-
ing systems [92], [155], [156], automated fault diagnosis and
repair mechanisms [83], [85], [87], [100], and fault tolerance
platforms with automatic recovery capabilities [31], have been
presented in academic experiments. However, these designs
are still in an initial stage and have many shortcomings, such as
reliance on strong assumptions concerning the network states

and software systems, incomplete repair mechanisms, and high
overhead for recovery.

X. CONCLUSION

Although SDN promises network innovation, its reliabil-
ity issues have demanded widespread attention from academia
and industry. We surveyed academic publications on SDN fault
management from the period of 2008-2017 and information on
projects undertaken in open-source communities. We found
that although the available academic solutions and projects
address most SDN reliability issues, few can provide a com-
plete solution for SDN fault management, and many faults
encountered in SDN continue to be challenging. To address
these issues, a systematic and comprehensive survey of fault
analysis and an evaluation of existing solutions for and chal-
lenges facing SDN fault management will be necessary to
guide future research. Unfortunately, this literature was still
lacking.

In this paper, we conducted such a survey to present a
deep and comprehensive understanding and analysis of SDN
reliability issues. We started with an introduction of the charac-
teristics of SDN, considering its current state of development,
and provided a two-dimensional taxonomy of SDN fault man-
agement solutions as an overview. We then classified the types
of faults that can occur in the SDN architecture by means
of a deep analysis of their symptoms and root causes. Next,
the core of the survey was presented from four perspectives,
i.e., system measurement, fault diagnosis, fault recovery and
fault tolerance, along with in-depth discussions and compar-
isons of existing solutions. After the discussion of the existing
solutions that have been developed in an academic research
context, a study of open-source fault management projects
concerning SDN controllers was also presented. We found
that many projects are still in their initial stages and will need
greater effort to develop further. We therefore analyzed the gap
of SDN fault management solutions between academia and
industry and uncovered deep differences with corresponding
reasons as suggestions for future work. Finally, we have noted
several research challenges and emerging trends as future
directions for pursuing advancements in SDN. We believe that
these open issues must be addressed before the maturity of
SDN can reach an acceptable level.

REFERENCES

[1] D. Kreutz et al., “Software-defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[2] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” IEEE Commun. Surveys Tuts., vol. 16,
no. 4, pp. 1955–1980, 4th Quart., 2014.

[3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[4] ONF. (2014). SDN Architecture. Accessed: Jun. 28, 2018.
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_0606
2014.pdf

[5] E. Haleplidis et al., “Software-defined networking (SDN): Layers
and architecture terminology,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 7426, Jan. 2015. Accessed: Jun. 28, 2018. [Online].
Available: https://tools.ietf.org/rfc/rfc7426.txt

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 387

[6] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” in Proc. ACM SIGCOMM, 2008, pp. 69–74.

[7] R. Jain and S. Paul, “Network virtualization and software defined net-
working for cloud computing: A survey,” IEEE Commun. Mag., vol. 51,
no. 11, pp. 24–31, Nov. 2013.

[8] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[9] N. Bizanis and F. A. Kuipers, “SDN and virtualization solutions for
the Internet of Things: A survey,” IEEE Access, vol. 4, pp. 5591–5606,
2016.

[10] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” in Proc. ACM SIGCOMM, Hong Kong, 2013, pp. 3–14.

[11] P. Patel et al., “Ananta: Cloud scale load balancing,” in Proc. ACM
SIGCOMM, Hong Kong, 2013, pp. 207–218.

[12] S. Natarajan, A. Ramaiah, and M. Mathen, “A software defined cloud-
gateway automation system using OpenFlow,” in Proc. IEEE 2nd Conf.
CloudNet, San Francisco, CA, USA, 2013, pp. 219–226.

[13] Juniper Networks. (2014). Readiness, Benefits, and Barriers: An
SDN Progress Report. Accessed: Jun. 28, 2018. [Online]. Available:
https://www.usebackpack.com/resources/7178/download?1451715494

[14] A. M. Johnson, Jr., and M. Malek, “Survey of software tools for evalu-
ating reliability, availability, and serviceability,” ACM Comput. Surveys,
vol. 20, no. 4, pp. 227–269, 1988.

[15] P. Perešíni, M. Kuźniar, and D. Kostić, “Monocle: Dynamic, fine-
grained data plane monitoring,” in Proc. ACM CoNEXT, Heidelberg,
Germany, 2015, Art. no. 32.

[16] C. Scott et al., “Troubleshooting blackbox SDN control software with
minimal causal sequences,” in Proc. ACM SIGCOMM, Chicago, IL,
USA, 2014, pp. 395–406.

[17] K. Mahajan, R. Poddar, M. Dhawan, and V. Mann, “JURY: Validating
controller actions in software-defined networks,” in Proc. 46th
IEEE/IFIP DSN, Toulouse, France, 2016, pp. 109–120.

[18] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about
SDN flow tables,” in Passive and Active Network Measurement. Cham,
Switzerland: Springer, 2015, pp. 347–359.

[19] P. Kazemian et al., “Real time network policy checking using header
space analysis,” in Proc. 10th USENIX NSDI, Lombard, IL, USA, 2013,
pp. 99–112.

[20] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “VeriFlow: Verifying
network-wide invariants in real time,” in Proc. 10th USENIX NSDI,
Lombard, IL, USA, 2013, pp. 15–27.

[21] L. Paradis and Q. Han, “A survey of fault management in wireless
sensor networks,” J. Netw. Syst. Manag., vol. 15, no. 2, pp. 171–190,
2007.

[22] M. Yu, H. Mokhtar, and M. Merabti, “Fault management in wireless
sensor networks,” IEEE Wireless Commun., vol. 14, no. 6, pp. 13–19,
Dec. 2007.

[23] M. Canini, D. Venzano, P. Perešíni, D. Kostic, and J. Rexford, “A
NICE way to test OpenFlow applications,” in Proc. 9th USENIX NSDI,
San Jose, CA, USA, 2012, pp. 127–140.

[24] N. Foster et al., “Frenetic: A network programming language,” in Proc.
ACM PLDI, Tokyo, Japan, 2011, pp. 279–291.

[25] P. Sun et al., “A network-state management service,” in Proc. ACM
SIGCOMM, Chicago, IL, USA, 2014, pp. 563–574.

[26] T. Koponen et al., “Network virtualization in multi-tenant datacenters,”
in Proc. 11th USENIX NSDI, Seattle, WA, USA, 2014, pp. 203–216.

[27] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. 9th USENIX NSDI, San Jose,
CA, USA, 2012, pp. 113–126.

[28] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in Proc. 8th ACM CoNEXT, Nice, France, 2012,
pp. 241–252.

[29] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “UMON: Flexible
and fine grained traffic monitoring in open vSwitch,” in Proc. ACM
CoNEXT, Heidelberg, Germany, 2015, Art. no. 15.

[30] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring
with UnivMon,” in Proc. ACM SIGCOMM, Florianópolis, Brazil, 2016,
pp. 101–114.

[31] B. Chandrasekaran, B. Tschaen, and T. Benson, “Isolating and toler-
ating SDN application failures with LegoSDN,” in Proc. ACM SOSR,
Santa Clara, CA, USA, 2016, Art. no. 7.

[32] F. Botelho, A. Bessani, F. Ramos, and P. Ferreira, “SMaRtLight: A
practical fault-tolerant SDN controller,” CoRR, vol. abs/1407.6062,
2014. [Online]. Available: http://arxiv.org/abs/1407.6062

[33] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: A survey,” IEEE Commun. Surveys Tuts., vol. 17,
no. 4, pp. 2317–2346, 4th Quart., 2015.

[34] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security
in software defined networks,” IEEE Commun. Surveys Tuts., vol. 18,
no. 1, pp. 623–654, 1st Quart., 2015.

[35] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of secur-
ing networks using software defined networking,” IEEE Trans. Rel.,
vol. 64, no. 3, pp. 1086–1097, Sep. 2015.

[36] A. Yassine, H. Rahimi, and S. Shirmohammadi, “Software defined
network traffic measurement: Current trends and challenges,” IEEE
Instrum. Meas. Mag., vol. 18, no. 2, pp. 42–50, Apr. 2015.

[37] J. Chen, J. Chen, F. Xu, M. Yin, and W. Zhang, “When software defined
networks meet fault tolerance: A survey,” in Proc. Int. Conf. Algorithms
Archit. Parallel Process., 2015, pp. 351–368.

[38] J. Qadir and O. Hasan, “Applying formal methods to networking:
Theory, techniques, and applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 1, pp. 256–291, 1st Quart., 2015.

[39] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A
survey on the security of stateful SDN data planes,” IEEE Commun.
Surveys Tuts., vol. 19, no. 3, pp. 1701–1725, 3rd Quart., 2017.

[40] ONF. OpenFlow Switch Specification Version 1.5.1.
Accessed: Jun. 28, 2018. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

[41] A. Doria et al., “Forwarding and control element separation (ForCES)
protocol specification,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 5810, Mar. 2010. Accessed: Jun. 28, 2018. [Online]. Available:
https://tools.ietf.org/rfc/rfc5810.txt

[42] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[43] X. Wen et al., “SDNShield: Reconciliating configurable application
permissions for SDN app markets,” in Proc. 46th IEEE/IFIP DSN,
Toulouse, France, 2016, pp. 121–132.

[44] H. Yin et al., “SDNi: A message exchange protocol for software defined
networks (SDNS) across multiple domains,” IETF, Fremont, CA, USA,
Internet Draft, Jun. 2012. Accessed: Jun. 28, 2018. [Online]. Available:
https://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

[45] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “A verification
platform for SDN-enabled applications,” in Proc. IEEE IC2E, Boston,
MA, USA, 2014, pp. 337–342.

[46] T. Ball et al., “VeriCon: Towards verifying controller programs in
software-defined networks,” in Proc. 35th ACM PLDI, Edinburgh,
U.K., 2014, pp. 282–293.

[47] F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, “A software engi-
neering perspective on SDN programmability,” IEEE Commun. Surveys
Tuts., vol. 18, no. 2, pp. 1255–1272, 2nd Quart., 2016.

[48] C. Monsanto et al., “Composing software defined networks,” in
Proc. 10th USENIX NSDI, 2013, pp. 1–13.

[49] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” in Proc. ACM SIGCOMM, London, U.K.,
2015, pp. 29–42.

[50] E. Haleplidis et al., “Network programmability with ForCES,” IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1423–1440, 3rd Quart.,
2015.

[51] J. Halpern, “Forwarding and control element separation (ForCES) for-
warding element model,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 5812, Mar. 2010. Accessed: Jun. 28, 2018. [Online]. Available:
https://tools.ietf.org/rfc/rfc5812.txt

[52] B. Pfaff and B. Davie, “The open vSwitch database management pro-
tocol,” Internet Eng. Task Force, Fremont, CA, USA, RFC 7047,
Dec. 2013. Accessed: Jun. 28, 2018. [Online]. Available: https://rfc-
editor.org/rfc/rfc7047.txt

[53] R. Enns, M. Bjorklund, and J. Schoenwaelder, “Network configuration
protocol (NETCONF),” Internet Eng. Task Force, Fremont, CA, USA,
RFC 6241, Jun. 2011. Accessed: Jun. 28, 2018. [Online]. Available:
https://tools.ietf.org/rfc/rfc6241.txt

[54] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. 2nd ACM HotSDN,
Hong Kong, 2013, pp. 127–132.

[55] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostic, “A
SOFT way for OpenFlow switch interoperability testing,” in Proc. ACM
CoNEXT, Nice, France, 2012, pp. 265–276.

[56] J. Yao, Z. Wang, X. Yin, X. Shiyz, and J. Wu, “Formal modeling
and systematic black-box testing of SDN data plane,” in Proc. ICNP,
Raleigh, NC, USA, 2014, pp. 179–190.

388 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

[57] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox deploy-
ments,” EECS Dept., Univ. California at Berkeley, Berkeley, CA, USA,
Rep. UCB/EECS-2012-24, 2012. Accessed: Jun. 28, 2018. [Online].
Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-
2012-24.pdf

[58] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
Programming platform-independent stateful OpenFlow applications
inside the switch,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 2, pp. 44–51, 2014.

[59] S. Zhu, J. Bi, and C. Sun, “SFA: Stateful forwarding abstraction in
SDN data plane,” in Proc. Open Netw. Summit (ONS), 2014, pp. 1–2.

[60] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in Proc. 3rd
ACM HotSDN, Chicago, IL, USA, 2014, pp. 61–66.

[61] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. 2nd ACM HotSDN, 2013, pp. 19–24.

[62] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in Proc. ACM SIGCOMM, Hong Kong, 2013, pp. 27–38.

[63] G. G. Xie et al., “On static reachability analysis of IP networks,”
in Proc. 24th IEEE INFOCOM, vol. 3. Miami, FL, USA, 2005,
pp. 2170–2183.

[64] H. Yang and S. S. Lam, “Real-time verification of network proper-
ties using atomic predicates,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 887–900, Apr. 2016.

[65] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. 12th USENIX NSDI,
Oakland, CA, USA, 2015, pp. 499–512.

[66] H. Yang and S. S. Lam, “Scalable verification of networks with
packet transformers using atomic predicates,” IEEE/ACM Trans. Netw.,
vol. 25, no. 5, pp. 2900–2915, Oct. 2017.

[67] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “SymNet:
Scalable symbolic execution for modern networks,” in Proc. ACM
SIGCOMM, Florianópolis, Brazil, 2016, pp. 314–327.

[68] H. Zeng et al., “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in Proc. 11th USENIX NSDI, Seattle, WA, USA,
2014, pp. 87–99.

[69] J. C. Mogul et al., “Corybantic: Towards the modular composition of
SDN control programs,” in Proc. 12th ACM HotNets, College Park,
MD, USA, 2013, p. 1.

[70] K. Bu et al., “Is every flow on the right track? Inspect SDN forwarding
with RuleScope,” in Proc. IEEE INFOCOM, San Francisco, CA, USA,
2016, pp. 1–9.

[71] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assess-
ment,” in Proc. 2nd ACM HotSDN, Hong Kong, 2013, pp. 151–152.

[72] Z. Peng, “Towards rule enforcement verification for software defined
networks,” in Proc. IEEE INFOCOM, Atlanta, GA, USA, 2017,
pp. 1–9.

[73] P. Zhang et al., “Mind the gap: Monitoring the control-data plane con-
sistency in software defined networks,” in Proc. ACM CoNEXT, Irvine,
CA, USA, 2016, pp. 19–33.

[74] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev,
“SDNRacer: Detecting concurrency violations in software-defined net-
works,” in Proc. ACM SOSR, Santa Barbara, CA, USA, 2015, p. 22.

[75] M. Kuzniar, P. Peresini, and D. Kostić, “Providing reliable FIB update
acknowledgments in SDN,” in Proc. ACM CoNEXT, Sydney, NSW,
Australia, 2014, pp. 415–422.

[76] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An open framework for OpenFlow switch evaluation,” in
Proc. Passive Active Netw. Meas., Vienna, Austria, 2012, pp. 85–95.

[77] M. Kuzniar, P. Peresini, and D. Kostic, “ProboScope: Data plane
probe packet generation,” EPFL, Lausanne, Switzerland, Rep.
EPFL-REPORT-201824, 2014.

[78] E. Rojas, “From software-defined to human-defined networking:
Challenges and opportunities,” IEEE Netw., vol. 32, no. 1, pp. 179–185,
Jan./Feb. 2018.

[79] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263–297, 2000.

[80] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual mid-
dleboxes,” in Proc. 10th USENIX NSDI, Lombard, IL, USA, 2013,
pp. 227–240.

[81] A. Gember-Jacobson et al., “OpenNF: Enabling innovation in network
function control,” in Proc. ACM SIGCOMM, Chicago, IL, USA, 2014,
pp. 163–174.

[82] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network func-
tions: Breaking the tight coupling of state and processing,” in Proc. 14th
USENIX NSDI, Boston, MA, USA, 2017, pp. 97–112.

[83] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann, “OFRewind:
Enabling record and replay troubleshooting for networks,” in Proc.
USENIX ATC, Portland, OR, USA, 2011, p. 29.

[84] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “Verifiably-
safe software-defined networks for CPS,” in Proc. 2nd ACM HiCoNS,
Philadelphia, PA, USA, 2013, pp. 101–110.

[85] M. Kuźniar, P. Perešíni, N. Vasić, M. Canini, and D. Kostić, “Automatic
failure recovery for software-defined networks,” in Proc. 2nd ACM
HotSDN, Hong Kong, 2013, pp. 159–160.

[86] H. Hojjat, P. Rümmer, J. McClurg, P. Černỳ, and N. Foster, “Optimizing
horn solvers for network repair,” in Proc. 16th IEEE FMCAD,
Mountain View, CA, USA, 2016, pp. 73–80.

[87] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
bug removal for software-defined networks,” in Proc. 14th USENIX
NSDI, Boston, MA, USA, 2017, pp. 719–733.

[88] J. Yao et al., “Model based black-box testing of SDN applications,”
in Proc. ACM CoNEXT Student Workshop, Sydney, NSW, Australia,
2014, pp. 37–39.

[89] P. Porras et al., “A security enforcement kernel for OpenFlow
networks,” in Proc. 1st ACM HotSDN, Helsinki, Finland, 2012,
pp. 121–126.

[90] S. Natarajan, X. Huang, and T. Wolf, “Efficient conflict detection
in flow-based virtualized networks,” in Proc. IEEE ICNC, 2012,
pp. 690–696.

[91] A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network
controllers,” ACM SIGPLAN Notices, vol. 48, no. 6, pp. 483–494, 2013.

[92] B. Heller et al., “Leveraging SDN layering to systematically trou-
bleshoot networks,” in Proc. 2nd ACM HotSDN, Hong Kong, 2013,
pp. 37–42.

[93] D. M. Volpano, X. Sun, and G. G. Xie, “Towards systematic detection
and resolution of network control conflicts,” in Proc. 3rd ACM HotSDN,
Chicago, IL, USA, 2014, pp. 67–72.

[94] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi,
“Tierless programming and reasoning for software-defined networks,”
in Proc. 11th USENIX NSDI, Seattle, WA, USA, 2014, pp. 519–531.

[95] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire: Declarative
fault tolerance for software-defined networks,” in Proc. 2nd ACM
HotSDN, Hong Kong, 2013, pp. 109–114.

[96] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Apr. 2016.

[97] R. Durairajan, J. Sommers, and P. Barford, “Controller-agnostic SDN
debugging,” in Proc. 10th ACM CoNEXT, 2014, pp. 227–234.

[98] T. Nelson, D. Yu, Y. Li, R. Fonseca, and S. Krishnamurthi, “Simon:
Scriptable interactive monitoring for SDNs,” in Proc. ACM SOSR,
Sydney, NSW, Australia, 2015, p. 19.

[99] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
network repair with meta provenance,” in Proc. 14th ACM HotNets,
Philadelphia, PA, USA, 2015, p. 26.

[100] W. Zhou, J. Croft, B. Liu, and M. Caesar, “NEAt: Network error auto-
correct,” in Proc. ACM SOSR, Renton, WA, USA, 2017, pp. 157–163.

[101] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes
with FlowTest,” in Proc. 3rd ACM HotSDN., 2014, pp. 79–84.

[102] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing
context-dependent policies in stateful networks,” in Proc. 13th USENIX
NSDI, 2016, pp. 275–289.

[103] H. Zhang et al., “Enabling layer 2 pathlet tracing through context
encoding in software-defined networking,” in Proc. 3rd ACM HotSDN,
2014, pp. 169–174.

[104] P. Tammana and R. Agarwal, and M. Lee, “Cherrypick: Tracing packet
trajectory in software-defined datacenter networks,” in Proc. ACM
SOSR, 2015, p. 23.

[105] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling
path queries,” in Proc. 13th USENIX NSDI, 2016, pp. 207–222.

[106] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc. 1st
ACM HotSDN, 2012, pp. 55–60.

[107] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. 11th USENIX NSDI, 2014, pp. 71–85.

[108] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic
matrix estimator for OpenFlow networks,” in Proc. PAM, 2010,
pp. 201–210.

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 389

[109] C. Yu et al., “FlowSense: Monitoring network utilization with zero
measurement cost,” in Passive and Active Network Measurement.
Heidelberg, Germany: Springer, 2013, pp. 31–41.

[110] J. Yang et al., “Rethinking the design of OpenFlow switch counters,”
in Proc. ACM SIGCOMM, 2016, pp. 589–590.

[111] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM, Toronto, ON,
Canada, 2011, pp. 254–265.

[112] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in Proc. ACM SIGCOMM, 2016,
pp. 129–143.

[113] Z. Hu and J. Luo, “Cracking network monitoring in DCNs with SDN,”
in Proc. IEEE INFOCOM, 2015, pp. 199–207.

[114] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” in Proc. 34th IEEE ICDCS, 2014, pp. 228–237.

[115] W. Han et al., “State-aware network access management for software-
defined networks,” in Proc. 21st ACM SACMAT, 2016, pp. 1–11.

[116] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. 10th USENIX NSDI, 2013, pp. 29–42.

[117] Q. Huang et al., “SketchVisor: Robust network measurement for
so ware packet processing,” in Proc. ACM SIGCOMM, 2017,
pp. 113–126.

[118] J. Rasley et al., “Planck: Millisecond-scale monitoring and control for
commodity networks,” in Proc. ACM SIGCOMM, 2014, pp. 407–418.

[119] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. ACM SIGCOMM, 2015, pp. 479–491.

[120] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and D. Walker, “HONE:
Joint host-network traffic management in software-defined networks,”
J. Netw. Syst. Manag., vol. 23, no. 2, pp. 374–399, 2015.

[121] H. Chen et al., “Felix: Implementing traffic measurement on end hosts
using program analysis,” in Proc. ACM SOSR, 2016, Art. no. 14.

[122] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated OpenFlow infrastructures,” in Proc. 3rd ACM
SaftConfig, Chicago, IL, USA, 2010, pp. 37–44.

[123] H. Mai et al., “Debugging the data plane with anteater,” in Proc. ACM
SIGCOMM, 2011, pp. 290–301.

[124] Y. Xu, Y. Liu, R. Singh, and S. Tao, “Identifying SDN state inconsis-
tency in OpenStack,” in Proc. ACM SOSR, 2015, p. 11.

[125] A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time
network verification using atoms,” in Proc. 14th USENIX NSDI., 2017,
pp. 735–749.

[126] L. Ryzhyk et al., “Correct by construction networks using stepwise
refinement,” in Proc. 14th USENIX NSDI, 2017, pp. 683–698.

[127] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker,
“Verifying isolation properties in the presence of middle-
boxes,” CoRR, vol. abs/1409.7687, 2014. [Online]. Available:
http://arxiv.org/abs/1409.7687

[128] X. Wen et al., “RuleScope: Inspecting forwarding faults for software-
defined networking,” IEEE/ACM Trans. Netw., vol. 25, no. 4,
pp. 2347–2360, Aug. 2017.

[129] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “SDN traceroute:
Tracing SDN forwarding without changing network behavior,” in
Proc. 3rd ACM HotSDN, 2014, pp. 145–150.

[130] S. Narayana, J. Rexford, and D. Walker, “Compiling path queries
in software-defined networks,” in Proc. 3rd ACM HotSDN, 2014,
pp. 181–186.

[131] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter net-
work debugging with pathDump,” in Proc. 12th USENIX OSDI, 2016,
pp. 233–248.

[132] Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “Answering why-
not queries in software-defined networks with negative provenance,”
in Proc. 12th ACM HotNets, 2013, p. 3.

[133] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing
missing events in distributed systems with negative provenance,” in
Proc. ACM SIGCOMM, 2014, pp. 383–394.

[134] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good, the
bad, and the differences: Better network diagnostics with differential
provenance,” in Proc. ACM SIGCOMM, 2016, pp. 115–128.

[135] OFTest OpenFlow Switch Testing Framework. Accessed: Jun. 28, 2018.
[Online]. Available: http://www.projectfloodlight.org/oftest/

[136] M. Kuzniar, M. Canini, and D. Kostic, “OFTEN testing OpenFlow
networks,” in Proc. Eur. Workshop SDN, 2012, pp. 54–60.

[137] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model check-
ing invariant security properties in OpenFlow,” in Proc. IEEE ICC,
2013, pp. 1974–1979.

[138] B. L. A. Batista, G. A. L. de Campos, and M. P. Fernandez, “Flow-
based conflict detection in OpenFlow networks using first-order logic,”
in Proc. IEEE ISCC, 2014, pp. 1–6.

[139] J. Wang et al., “Towards a security-enhanced firewall application
for OpenFlow networks,” in Cyberspace Safety Security. Cham,
Switzerland: Springer, 2013, pp. 92–103.

[140] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proc. 3rd ACM
HotSDN, 2014, pp. 97–102.

[141] A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev,
“SDNRacer: Concurrency analysis for software-defined networks,” in
Proc. ACM PLDI, 2016, pp. 402–415.

[142] R. May, A. El-Hassany, L. Vanbever, and M. Vechev, “BigBug:
Practical concurrency analysis for SDN,” in Proc. ACM SOSR, 2017,
pp. 88–94.

[143] R. C. Scott, A. Wundsam, K. Zarifis, and S. Shenker, “What,
where, and when: Software fault localization for SDN,” Elect. Eng.
Comput. Sci. Dept., Univ. California at Berkeley, Berkeley, CA,
USA, Rep. UCB/EECS-2012-178, Jul. 2012. Accessed: Jun. 28, 2018.
[Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-178.pdf

[144] C. Scott et al., “How did we get into this mess? Isolating fault-
inducing inputs to SDN control software,” Elect. Eng. Comput.
Sci. Dept., Univ. California at Berkeley, Berkeley, CA, USA,
Rep. UCB/EECS-2013-8, 2013. Accessed: Jun. 28, 2018. [Online].
Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-
2013-8.pdf

[145] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and
R. Sherwood, “On controller performance in software-defined net-
works,” in Proc. 2nd USENIX Hot-ICE, 2012, pp. 1–6.

[146] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible
OpenFlow-controller benchmark,” in Proc. Eur. Workshop SDN, 2012,
pp. 48–53.

[147] N. Laurent, S. Vissicchio, and M. Canini, “SDLoad: An extensible
framework for SDN workload generation,” in Proc. 3rd ACM HotSDN,
2014, pp. 215–216.

[148] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia,
“OFCProbe: A platform-independent tool for OpenFlow controller
analysis,” in Proc. IEEE ICCE, 2014, pp. 182–187.

[149] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” in Proc. 20th IEEE ICPADS, 2014,
pp. 671–676.

[150] P. Perešíni and M. Canini, “Is your OpenFlow application correct?” in
Proc. ACM CoNEXT Student Workshop, 2011, p. 18.

[151] M. Canini, D. Kostic, J. Rexford, and D. Venzano, “Automating the
testing of OpenFlow applications,” in Proc. 1st Int. Workshop Rigorous
Protocol Eng. (WRiPE), 2011, pp. 1–6.

[152] D. Sethi, S. Narayana, and S. Malik, “Abstractions for model checking
SDN controllers,” in Proc. 13th IEEE FMCAD, Portland, OR, USA,
2013, pp. 145–148.

[153] T. Nelson, A. D. Ferguson, and S. Krishnamurthi, “Static differential
program analysis for software-defined networks,” in Proc. Int. Symp.
Formal Methods, 2015, pp. 395–413.

[154] R. Beckett et al., “An assertion language for debugging SDN applica-
tions,” in Proc. 3rd ACM HotSDN, 2014, pp. 91–96.

[155] I. Pelle, T. Lévai, F. Németh, and A. Gulyás, “One tool to rule them all:
A modular troubleshooting framework for SDN (and other) networks,”
in Proc. ACM SOSR, 2015, p. 24.

[156] T. Lévai, I. Pelle, F. Németh, and A. Gulyás, “EPOXIDE: A modular
prototype for SDN troubleshooting,” in Proc. ACM SIGCOMM, 2015,
pp. 359–360.

[157] A. Ko and B. Myers, “Debugging reinvented,” in Proc. ACM/IEEE
ICSE, 2008, pp. 301–310.

[158] B. H. Sigelman et al., “Dapper, a large-scale distributed systems tracing
infrastructure,” Google, Inc., Mountain View, CA, USA, Rep. dapper-
2010-1, 2010.

[159] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from
execution logs,” in Proc. ACM KDD, 2016, pp. 215–224.

[160] X. Yu et al., “CloudSeer: Workflow monitoring of cloud infrastruc-
tures via interleaved logs,” in Proc. ACM ASPLOS, vol. 50, 2016,
pp. 489–502.

[161] R. Sherwood et al., “FlowVisor: A network virtualization layer,”
OpenFlow Switch Consortium, Rep. OPENFLOW-TR-2009-1,
pp. 1–13, 2009. [Online]. Available: https://pdfs.semanticscholar.org/
64f3/a81fff495ac336dccdd63136d451852eb1c9.pdf

390 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

[162] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proc. ACM
POPL, vol. 47, 2012, pp. 217–230.

[163] R. Majumdar, S. D. Tetali, and Z. Wang, “Kuai: A model checker
for software-defined networks,” in Proc. 14th IEEE FMCAD, 2014,
pp. 163–170.

[164] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for
SDN prototyping,” in Proc. 2nd ACM HotSDN, 2013, pp. 31–36.

[165] Y. Zhang, N. Beheshti, and R. Manghirmalani, “NetRevert: Rollback
recovery in SDN,” in Proc. 3rd ACM HotSDN, 2014, pp. 231–232.

[166] T. Sasaki, A. Perrig, and D. E. Asoni, “Control-plane isolation and
recovery for a secure SDN architecture,” in Proc. IEEE NetSoft, 2016,
pp. 459–464.

[167] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on net-
work virtualization hypervisors for software defined networking,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 655–685, 1st Quart., 2016.

[168] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proc. 1st ACM
HotSDN, 2012, pp. 79–84.

[169] M. Canini et al., “STN: A robust and distributed SDN control plane,”
in Proc. Open Netw. Summit, 2014, pp. 1–2.

[170] X. Wen et al., “Compiling minimum incremental update for modular
SDN languages,” in Proc. 3rd ACM HotSDN, 2014, pp. 193–198.

[171] C. J. Anderson et al., “NetKAT: Semantic foundations for networks,”
in Proc. ACM POPL, vol. 49, 2014, pp. 113–126.

[172] X. Wen et al., “RuleTris: Minimizing rule update latency for TCAM-
based SDN switches,” in Proc. IEEE ICDCS, 2016, pp. 179–188.

[173] A. Dixit, K. Kogan, and P. Eugster, “Composing heterogeneous SDN
controllers with flowbricks,” in Proc. IEEE ICNP, 2014, pp. 287–292.

[174] X. Jin, J. Rexford, and D. Walker, “Incremental update for a com-
positional SDN hypervisor,” in Proc. 3rd ACM HotSDN, 2014,
pp. 187–192.

[175] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A composi-
tional hypervisor for software-defined networks,” in Proc. 12th USENIX
NSDI, 2015, pp. 87–101.

[176] H. Pan, G. Xie, P. He, Z. Li, and L. Mathy, “Action computation for
compositional software-defined networking,” in Proc. IFIP Netw., 2016,
pp. 19–27.

[177] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,”
in Proc. ACM SIGCOMM, 2013, pp. 327–338.

[178] A. AuYoung et al., “Democratic resolution of resource conflicts
between SDN control programs,” in Proc. 10th ACM CoNEXT, 2014,
pp. 391–402.

[179] H. Kim et al., “CORONET: Fault tolerance for software defined
networks,” in Proc. 20th IEEE ICNP, 2012, pp. 1–2.

[180] K. He et al., “Latency in software defined networks: Measurements
and mitigation techniques,” in Proc. ACM SIGMETRICS, vol. 43, 2015,
pp. 435–436.

[181] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Enabling fast failure recovery in OpenFlow networks,” in Proc. IEEE
DRCN, 2011, pp. 164–171.

[182] D. Brungard, M. Betts, S. Ueno, B. Niven-Jenkins, and N. Sprecher,
“Requirements of an MPLS transport profile,” Internet Eng. Task Force,
Fremont, CA, USA, RFC 5654, Sep. 2009. Accessed: Jun. 28, 2018.
[Online]. Available: https://tools.ietf.org/rfc/rfc5654.txt

[183] J. Li, J. Hyun, J.-H. Yoo, S. Baik, and J. W.-K. Hong, “Scalable
failover method for data center networks using OpenFlow,” in Proc.
IEEE NOMS, 2014, pp. 1–6.

[184] ONF. OpenFlow Switch Specification Version 1.1.0 Implemented.
Accessed: Jun. 28, 2018. [Online]. Available: https://
www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-
v1.0.0.pdf

[185] R. Pujar and C. Icaro. 2016. Path Protection and Failover Strategies
in SDN Networks. Accessed: Jun. 6, 2018. [Online]. Available: http://
events17.linuxfoundation.org/sites/events/files/slides/Path%20protectio
n%20and%20failover%20strategies%20in%20SDN%20networks.pdf

[186] N. Sahri and K. Okamura, “Fast failover mechanism for software
defined networking: OpenFlow based,” in Proc. 9th Int. Conf. Future
Internet Technol., 2014, p. 16.

[187] H. Li, Q. Li, Y. Jiang, T. Zhang, and L. Wang, “A declarative failure
recovery system in software defined networks,” in Proc. IEEE ICC,
2016, pp. 1–6.

[188] D. Katz and D. Ward, “Bidirectional forwarding detection
(BFD),” Internet Eng. Task Force, Fremont, CA, USA, RFC
5880, Jun. 2010. Accessed: Jun. 6, 2018. [Online]. Available:
https://tools.ietf.org/rfc/rfc5880.txt

[189] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting carrier-grade recovery requirements,” Comput.
Commun., vol. 36, no. 6, pp. 656–665, 2013.

[190] N. L. Van Adrichem, B. J. Van Asten, and F. A. Kuipers, “Fast recovery
in software-defined networks,” in Proc. 3rd IEEE Eur. Workshop SDN,
2014, pp. 61–66.

[191] B. Stephens, A. L. Cox, and S. Rixner, “Scalable multi-failure fast
failover via forwarding table compression,” in Proc. ACM SOSR, 2016,
Art. no. 9.

[192] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane
connectivity with local fast failover: Introducing OpenFlow graph
algorithms,” in Proc. 3rd ACM HotSDN, 2014, pp. 121–126.

[193] L. Schiff, M. Borokhovich, and S. Schmid, “Reclaiming the brain:
Useful OpenFlow functions in the data plane,” in Proc. 13th ACM
HotNets, 2014, p. 7.

[194] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“In-band control, queuing, and failure recovery functionalities for
OpenFlow,” IEEE Netw., vol. 30, no. 1, pp. 106–112, Jan./Feb. 2016.

[195] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Fast failure recovery for in-band OpenFlow networks,” in Proc. 9th
IEEE Design Rel. Commun. Netw. (DRCN), 2013, pp. 52–59.

[196] Y. Hu et al., “Control traffic protection in software-defined networks,”
in Proc. IEEE Globecom, Austin, TX, USA, 2014, pp. 1878–1883.

[197] M. Obadia, M. Bouet, J. Leguay, K. Phemius, and L. Iannone, “Failover
mechanisms for distributed SDN controllers,” in Proc. IEEE Conf.
NOF, 2014, pp. 1–6.

[198] N. Beheshti and Y. Zhang, “Fast failover for control traffic in software-
defined networks,” in Proc. IEEE GLOBECOM, Anaheim, CA, USA,
2012, pp. 2665–2670.

[199] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proc. USENIX INM/WREN, 2010, p. 3.

[200] H. Li, P. Li, S. Guo, and A. Nayak, “Byzantine-resilient secure
software-defined networks with multiple controllers in cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 4, pp. 436–447, Oct./Dec. 2014.

[201] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
fault-tolerance in software-defined networking,” in Proc. ACM SOSR,
2015, p. 4.

[202] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in Proc. IEEE Globecom, Kathmandu, Nepal,
2011, pp. 1–6.

[203] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-
aware controller placement for software-defined networks,” in Proc.
IFIP/IEEE IM, Ghent, Belgium, 2013, pp. 672–675.

[204] M. Guo and P. Bhattacharya, “Controller placement for improving
resilience of software-defined networks,” in Proc. 4th IEEE ICNDC,
Los Angeles, CA, USA, 2013, pp. 23–27.

[205] L. F. Müller et al., “Survivor: An enhanced controller placement
strategy for improving SDN survivability,” in Proc. IEEE Globecom,
Austin, TX, USA, 2014, pp. 1909–1915.

[206] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. 9th IEEE Int. CNSM, Zürich, Switzerland, 2013,
pp. 18–25.

[207] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in
software-defined networks,” in Proc. 3rd ACM HotSDN, Chicago, IL,
USA, 2014, pp. 31–36.

[208] D. Hock et al., “Pareto-optimal resilient controller placement in SDN-
based core networks,” in Proc. IEEE ITC, Shanghai, China, 2013,
pp. 1–9.

[209] S. Lange et al., “Heuristic approaches to the controller placement prob-
lem in large scale SDN networks,” IEEE Trans. Netw. Service Manag.,
vol. 12, no. 1, pp. 4–17, Mar. 2015.

[210] B. Heller, R. Sherwood, and N. McKeown, “The controller place-
ment problem,” in Proc. 1st ACM HotSDN, Helsinki, Finland, 2012,
pp. 7–12.

[211] OpenDayLight. Cardinal. Accessed: Jun. 28, 2018. [Online]. Available:
https://wiki.opendaylight.org/view/Cardinal:Main

[212] OpenDayLight. Centinel. Accessed: Jun. 28, 2018. [Online]. Available:
https://wiki.opendaylight.org/view/Centinel:Main

[213] OpenDayLight. Project Proposals:Time Series Data
Repository. Accessed: Jun. 28, 2018. [Online]. Available:
https://wiki.opendaylight.org/view/Project_Proposals:Time_Series_Da
ta_Repository

[214] ONOS. OPEN-TAM: Traffic Analysis and Monitoring. Accessed:
Jun. 28, 2018. [Online]. Available: https://wiki.onosproject.org/
display/ONOS/OPEN-TAM%3A+Traffic+Analysis+and+Monitoring

YU et al.: FAULT MANAGEMENT IN SDN: SURVEY 391

[215] ONOS. Fault Management. Accessed: Jun. 28, 2018.
[Online]. Available: https://wiki.onosproject.org/display/ONOS/
Fault+Management

[216] ONOS. Composition Mode. Accessed: Jun. 28, 2018.
[Online]. Available: https://wiki.onosproject.org/display/ONOS/
Composition+Mode

[217] ONOS. Network TroubleShooting Module. Accessed: Jun. 28,
2018. [Online]. Available: https://wiki.onosproject.org/display/
ONOS/Network+TroubleShooting+Module

[218] ONOS. Network Artificial Intelligence. Accessed: Jun. 28, 2018.
[Online]. Available: https://wiki.onosproject.org/display/ONOS/
Network+Artificial+Intelligence

[219] OpenContrail. A SDN Analytics Interface. Accessed: Jun. 28,
2018. [Online]. Available: http://www.opencontrail.org/sandesh-a-sdn-
analytics-interface/

[220] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a model-driven SDN controller architecture,” in Proc. IEEE 15th
Int. Symp. World Wireless Mobile Multimedia Networks (WoWMoM),
Sydney, NSW, Australia, 2014, pp. 1–6.

[221] N. Gude et al., “NOX: Towards an operating system for networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
2008.

[222] J. Mccauley. (2014). Pox: A Python-Based OpenFlow
Controller. Accessed: Sep. 11, 2018. [Online]. Available:
https://noxrepo.github.io/pox-doc/html/

[223] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 9th USENIX Symp. OSDI, vol. 10, 2010,
pp. 1–6.

[224] D. Erickson, “The beacon OpenFlow controller,” in Proc. 2nd ACM
HotSDN, 2013, pp. 13–18.

[225] Big Switch. FloodLight Is an Open SDN Controller. Accessed: Jun. 28,
2018. [Online]. Available: http://www.projectfloodlight.org/floodlight/

[226] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in
Proc. 3rd ACM HotSDN, 2014, pp. 1–6.

[227] NEC. Trema: Full-Stack OpenFlow Framework in Ruby
and C. Accessed: Jun. 28, 2018. [Online]. Available:
https://trema.github.io/trema/

[228] NTT. Ryu SDN Framework: Build SDN Agilely. Accessed: Jun. 6, 2018.
[Online]. Available: https://osrg.github.io/ryu/

[229] OpenContrail: An Open-Source Network Virtualization Platform for the
Cloud, Cisco, San Jose, CA, USA, Accessed: Jun. 6, 2018. [Online].
Available: http://www.opencontrail.org/

[230] OpenDaylight. OpenDaylight: A Linux Foundation Collaborative
Project. Accessed: Jun. 6, 2018. [Online]. Available:
http://www.opendaylight.org

[231] ETRI. OpenIRIS: The Recursive SDN Openflow Controller. Accessed:
Jun. 6, 2018. [Online]. Available: http://openiris.etri.re.kr/

[232] KulCloud. OpenMUL. Accessed: Jun. 6, 2018. [Online]. Available:
http://www.openmul.org/

[233] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient and
scalable offloading of control applications,” in Proc. 1st ACM HotSDN,
2012, pp. 19–24.

[234] Cartesian. (2017). The Future of Networks: Dealing With
Transformation in a Virtualized World. Accessed: Jun. 6, 2018.
[Online]. Available: https://content.cartesian.com/the-future-of-
networks-report

[235] V. Yazıcı, U. C. Kozat, and M. O. Sunay, “A new control plane for 5G
network architecture with a case study on unified handoff, mobility, and
routing management,” IEEE Commun. Mag., vol. 52, no. 11, pp. 76–85,
Nov. 2014.

[236] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental SDN
deployment in enterprise networks,” in Proc. ACM SIGCOMM Comput.
Commun. Rev., vol. 43, 2013, pp. 473–474.

[237] H. Xu et al., “Incremental deployment and throughput maximization
routing for a hybrid SDN,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1861–1875, Jun. 2017.

[238] D. Hancock and J. van der Merwe, “HyPer4: Using P4 to virtualize
the programmable data plane,” in Proc. 12th ACM CoNEXT, 2016,
pp. 35–49.

[239] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of TCP,” in Proc. ACM SOSR, 2017, pp. 61–74.

[240] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. ACM SIGCOMM, 2017, pp. 85–98.

[241] ONF. (2016). Special Report: OpenFlow and SDN—State of
the Union. Accessed: Jun. 28, 2018. [Online]. Available:
http://www.opennetworking.org/wp-content/uploads/2013/05/Special-
Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf

[242] R. Pham, Y. Stoliar, and K. Schneider, “Automatically recommending
test code examples to inexperienced developers,” in Proc. 10th ACM
ESEC/FSE, 2015, pp. 890–893.

[243] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[244] M. Karakus and A. Durresi, “A survey: Control plane scalability
issues and approaches in software-defined networking (SDN),” Comput.
Netw., vol. 112, pp. 279–293, Jan. 2017.

[245] Z. M. Fadlullah et al., “State-of-the-art deep learning: Evolving
machine intelligence toward tomorrow’s intelligent network traffic
control systems,” IEEE Commun. Surveys Tuts., vol. 19, no. 4,
pp. 2432–2455, 4th Quart., 2017.

[246] A. Mestres et al., “Knowledge-defined networking,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 3, pp. 2–10, 2017.

Yinbo Yu received the B.E. degree in electronic
information engineering from Wuhan University,
Wuhan, China, in 2014, where he is currently pursu-
ing the Ph.D. degree with the School of Electronic
Information. He is also a visiting Ph.D. stu-
dent with the Department of Electrical Engineering
and Computer Science, Northwestern University,
Evanston, IL, USA. His research interests include
SDN, NFV, cellular network, and networking secu-
rity and measurement.

Xing Li received the B.E. degree in software engi-
neering from Shandong University, Jinan, China,
in 2016. He is currently pursuing the Ph.D.
degree with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
His research interests include SDN, NFV, and
cyberspace security.

Xue Leng (S’18) received the B.S. degree in
computer science and technology from Harbin
Engineering University, Harbin, China, in 2015.
She is currently pursuing the Ph.D. degree major
in computer science and technology with Zhejiang
University, Hangzhou, China. Her research interests
are SDN, NFV, and 5G protocol verification. She is
a Student Member of CCF.

Libin Song received the B.S. degree in automa-
tion from Tsinghua University, Beijing, China, in
2015 and the M.Sc. degree in computer science
from Northwestern University, Evanston, IL, USA,
in 2017. He is currently a Software Engineer with
TuSimple, San Diego, CA, USA. His research inter-
ests span on the area of distributed systems, network-
ing and security, with a current focus on computing
resources orchestration in enterprise data center.

392 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Kai Bu (M’17) received the B.Sc. and M.Sc. degrees
in computer science from the Nanjing University
of Posts and Telecommunications, Nanjing, China,
in 2006 and 2009, respectively, and the Ph.D.
degree in computer science from Hong Kong
Polytechnic University, Hong Kong, in 2013. He is
currently an Assistant Professor with the College
of Computer Science and Technology, Zhejiang
University, Hangzhou, China. His research interests
include networking and security. He was a recipient
of the Best Paper Award of IEEE/IFIP EUC 2011

and the Best Paper Nominees of IEEE ICDCS 2016. He is a member of
ACM and CCF.

Yan Chen (F’17) received the Ph.D. degree in com-
puter science from the University of California at
Berkeley, Berkeley, CA, USA, in 2003. He is cur-
rently a Professor with the Department of Electrical
Engineering and Computer Science, Northwestern
University, Evanston, IL, USA. He has over 10 000
Google Scholar citation with an H-index of 49.
His research interests include network security, mea-
surement, and diagnosis for large-scale networks
and distributed systems. He was a recipient of the
Department of Energy Early CAREER Award in

2005, the Department of Defense Young Investigator Award in 2007, the Best
Paper nomination in ACM SIGCOMM 2010, and the Most Influential Paper
Award in ASPLOS 2018.

Jianfeng Yang received the bachelor’s, master’s, and
Ph.D. degrees in information and communication
engineering from Wuhan University, China, in 1998,
2002, and 2009, respectively, where he is currently
an Associate Professor. He was a Visiting Scholar
with Intel Company in 2012 and Northwestern
University from 2015 to 2016. His research inter-
ests are in security and measurement for network-
ing, edge computing, and high-reliability real-time
wireless communication.

Liang Zhang received the Ph.D. degree in cir-
cuit and system from Southeast University, Nanjing,
China, in 2010. He is currently a Leader Research
Engineer with Huawei Technologies Company Ltd.
He is currently leading a big data analysis team,
focus on the intelligent fault analysis, network health
evaluation, and network automation.

Kang Cheng received the Ph.D. degree in control
theory and engineering from Southeast University,
Nanjing, China, in 2013. He is currently a Senior
Research Engineer with Huawei Technologies
Company Ltd. His research interests include network
fault diagnosis and optimization, optimal control,
and machine learning.

Xin Xiao received the Ph.D. degree in control
and computer engineering from the Politecnico
di Torino, Turin, Italy, in 2016. She is cur-
rently a Senior Research Engineer with Huawei
Technologies Company Ltd. Her research inter-
ests include data mining, network fault diagnosis
and optimization, time series analysis, and machine
learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

