
MeshScope: a bottom-up approach for
configuration inspection in service mesh

Xing Li1, 2, Xiao Wang2, and Yan Chen2

1Zhejiang University, 2Northwestern University

Master Node

Control Plane

Policy
Comparator (PC)

Message Queues

Behavior Analyzer

Dynamic Test
Engine (DTE)

Service

Sidecar

Master Node
Dynamic Test Agent (DTA)

Policy Inference Engine (PIE)

Plugin

Pod

Backend

Figure 3. MeshScope Architecture

Introduction
s an emerging deployment paradigm for cloud-native
applications, service mesh has developed rapidly in
recent years and gained widespread attention in

academia and industry. However, the administrator's
management intention and configuration may not be
consistent with actual system behavior. Unfortunately,
current configuration validation and audit works only focus
on the correctness of system configuration, but can not
detect and deal with the inconsistency between the actual
system behavior and the service mesh configuration.

In this paper, we present MeshScope, a bottom-up
approach that can inspect the configuration in service mesh
from the perspective of system behavior, and report the
actual system behavior to the administrator to guide the
subsequent configuration. It includes a novel hybrid policy
verification mechanism which combines static and dynamic
methods to examine the configurations from the data plane
of service mesh, and a system behavior analysis which parses
all the inconsistencies found and describes the system
behavior in terms of traffic management and security.

A

@ ACM SIGCOMM '20 Posters and Demos

Figure 1. Service Mesh Architecture

Control Plane Microservices
Sidecars

D
at

a
Pl

an
e

What is service mesh？

• Control Plane: A centralized program
that receives management policies and
controls the behavior of the data plane
accordingly.

A dedicated infrastructure layer that manages
the communication among microservices.

• Data Plane: A series of sidecars
responsible for proxying and managing
inbound and outbound traffic for services.

Figure 2. The three key concepts
in service management.

Intention

BehaviorConfiguration V

V

V

(1)

(2)

①

②

Why is configuration inspection necessary?

(1) Administrators’ management intentions may
not be configured correctly.

a) The complexity of service management.
b) The un-intuitiveness of policy configuration.

(2) The configured policies may not be reflected
in the behavior of data plane.

a) Inconsistency between control and data plane.
b) Installed policies may not be enforced.

Current solutions (configuration validation & audit) only aim at issue (1).

It is difficult to achieve consistency between
intention, configuration, and behavior.

How does MeshScope work?

Q: Why is it challenging in service mesh? (Compared with active probe
testing work in SDN)
A: The complexity of service mesh policies introduces new challenges to both the
generation of test workloads and the verification of system behavior.
• Various types of policies and the combination of rich matching conditions (e.g., API, method,

version, etc.) make it difficult to generate high-quality detection requests.
• Various policy actions, such as load balancing, authorization, and weighted routing, can lead

to challenges in deducing and verifying system behavior.
The sidecar’s computing power is much stronger than switch so that we can achieve efficient
distributed testing and meet the performance requirements in practice.

Currently, we are working on the implementation of the proposed
policy verification mechanism. In future work, we aim to utilize emerging
technologies to investigate the identified inconsistencies, and automate the
diagnosis and repair of misconfigurations.

Ongoing and future work

What is MeshScope?

• A hybrid policy verification mechanism.
o A static verification to detect the inconsistencies

between control plane and data plane.
o A dynamic verification to check policy enforcement.

Inspecting the configuration with system behavior.
Providing a mesh behavior view guide configuration.

①
②

• A system behavior analysis mechanism.
o Analyzing the collected inconsistencies.
o Describing the system behavior.

Policy Verification
I. Continuous static policy verification:

i. The PIE extracts the configuration from the sidecar, deduces the corresponding
control plane policies, and sends them to the PC.

ii. The PC compares the policies from different planes to identify inconsistencies.
II. On-demand dynamic policy verification:

i. The DTE issues dynamic verification instructions.
ii. The DTAs conduct distributed tests and send identified anomalies to the backend.

• A plugin embedded in each sidecar for performing tests
• A backend for managing the tests and analyzing the system behavior
• A series of message queues for caching test results.

Architecture

A Master
Node

B Master
Node

R

Random Services

Policy 1:
name: “B”
...

Policy 2:
prefix: “/service/”
...

Policy_1_inviation(Request_1)

Request_1

Policy_2_inviation(Request_2)Request_2

Service A

Figure 4. An example of dynamic verification for inbound policies: to verify Policy 1 for service
A, its Dynamic Test Agent sends an invitation to the expected sender (B) (). Afterwards, the
DTA of B sends back the request A needs to check whether Policy 1 has been enforced ().
For the policies with no specific desired sender, such as Policy 2, the receiver sends invitations
to random services (,). Finally, agents send the failures to the backend for analysis.

①

②
④③

①
②

④③

Behavior Analysis
I. Identifying root causes of the collected anomalies.
II. Providing preliminary repair suggestions based on some insights.
III. Describing system behavior in terms of traffic management and security.

