
Towards automated inter-service authorization
for microservice applications

Xing Li1, Yan Chen2 and Zhiqiang Lin3

1Zhejiang University, 2Northwestern University, 3The Ohio State University

Background

1. Request Extraction

1.National Key R&D Program of China (2017YFB0801703)
2.The Key Research and Development Program of Zhejiang Province

(2018C01088)

Automated Inter-service authorization

Objectives

Discussion

Acknowledgement

Solutions Completeness Fine Granularity Agility
Document-based approaches   

History-based approaches   

Model-based approaches   

JARVIS (proposed approach)   

Table 1. Comparison of JARVIS with existing security policy automation works.

• Microservices need inter-service authorization.
• Network-based inter-service communication is a potential attack surface.
• Services may be compromised due to container image vulnerabilities, etc.
• Compromised microservices can send malicious requests to other services

to initiate attacks or steal data.
• Current inter-service authorization mechanisms is not practical.

• These mechanisms still rely on the administrator’s manual configuration.
• They use complex policies for fine-grained authorization.
• The large scale and frequent iteration nature of microservice applications

make the manual method unrealistic.

Assumptions Architecture

Code Submit Master Node
Source code
of Service E

Static Analysis
Engine

Master
Node

Service
Registration

Policy DB Microservice
Infrastructure

Master
Node

D

B

C

A

E

Worker
Node-1

Worker Node-2

Service
Deploy

Configuration
Extraction Engine

CI Server

Service E
Service Build

Manifest file
of Service E

Permission Engine

Change Handler

Policy Generator

2. Policy Generation 3. Policy Updating

1. Completeness
Automatically gaining
complete invocation logics
among microservices.

2. Fine Granularity
Mining the detailed
attributes of the inter-
service invocations.

3. Agility
Dynamically adjusting
the policies based on the
changes in microservices.

• The administrator is trusted.

• The source code of
microservices is trusted.

• The behaviors that violate code
logic are considered malicious.

• The source code of
microservices can be obtained.

Figure 1. The system architecture of JARVIS.

Category Object Operation
Microservice

Update
New Version Deploy
Old Version Delete

Inter-Service Traffic
Management Rule

Change

New Rule Apply
Old Rule Delete
Old Rule Update

Preliminary Result

Conclusion

I. Identifying the statements that initiate
network API invocations.

II. Performing program slicing form
these statements.

III.Extracting the details of the
invocations from program slices.

 JARVIS: The first automated inter-service authorization mechanism
• A static-analysis based request extraction mechanism
• A fine-grained policy generation mechanism
• A two-stage change handling mechanism

 The preliminary result shows the completeness of request extraction

Language # of
Microservices

Extracted Requests
HTTP gRPC TCP

Java 6 5 (100%) - 2 (100%)
Python 3 3 (100%) 1 (100%) -

Go 7 - 19 (100%) 28 (100%)
JavaScript 4 28 (100%) - 2 (100%)

Ruby 1 1 (100%) - -
C# 1 - - 7 (100%)

• Unable to obtain the source code of microservices. (not common)
• Requesting the manifest files from the service providers.
• Manually configuring access control policies.
• Reverse engineering.

• The source code can not be trusted.
• Involving the administrator in the review of manifest files.

• Incomplete request extraction.
• The number of invocation protocols and corresponding libraries is limited.
• The administrator can add semantic models for their dedicated libraries.

Methodology

…
id = 20

…
endpoint = "http://example:9080"

…
url = endpoint + "/" + str(id)
res = requests.get(url)

…

Backward Taint
Propagation

Figure 2. Program slicing.

Table 2. Changes in microservice applications.

• Benchmarks: Bookinfo, Hipster Shop, and Sock Shop
• Ground Truth: Manual analysis

Two-stage change handling
I. Quickly determining if the change will affect

the access control policies.
II. Incrementally adjusting the access control

policies if they need to be modified.

Source Code Manifest File 1) Manifest File
2) Service Registration
3) Inter-Service Traffic

Management Rules

Access Control
Policy

Updated Access
Control Policies

Microservice
Changeoutin

in

in

outout

Table 3. The coverage of request extraction for 22 microservices developed in 6 languages.

1) Manifest File: What requests a microservice may initiate.
2) Service Registration: What APIs a microservice provides.
3) Inter-Service Traffic Management Rules: Where the

requests will eventually arrive.

• Service-based policy
aggregation

• Version-aware policy
management

Service B – v1

Permission 1
Permission 2
…

Service A – v2

Permission 1
Permission 2
…

Service A – v1

Permission 1
Permission 2
…

Contact Information: xing.li@zju.edu.cn

	幻灯片编号 1

