Towards automated inter-service authorization
for microservice applications

Xing Li', Yan Chen?and Zhigiang Lin’

'Zhejiang University, “Northwestern University, *The Ohio State University

Background

* Microservices need inter-service authorization. 1. Completeness 2. Fine Granularity 3. Agility
* Network-based inter-service communication 1s a potential attack surface. Automatically gaining Mining the detailed Dynamically adjusting
* Services may be compromised due to container image vulnerabilities, etc. complete mnvocation logics attributes of the inter- the policies based on the
* Compromised microservices can send malicious requests to other services among microservices. service invocations. changes in microservices.
to 1nitiate attacks or steal data.
* Current inter-service authorization mechanisms is not practical. Solutions Completeness Fine Granularity Agility
* These mechanisms still rely on the administrator’s manual configuration. Document-based approaches X X 4
* They use complex policies for fine-grained authorization. History-based approaches x v x
* The large scale and frequent 1ter.at1.on nature of microservice applications Model-based approaches v v v
make the manual method unrealistic.
JARVIS (proposed approach) v v v
‘ Automated Inter-service authorization Table 1. Comparison of JARVIS with existing security policy automation works.
Assumptions Architecture
- o . ° I __ e m ool ool -
 The administrator is trusted. Static AnalysisN_> — l\/\fglfest ﬁIEe I,’/ 4 Configuration) Master \\\\ E/ Worker \E "/ Worker Node-2 \‘\I
e T i E— of ServiceE | . : = 10 '
The source code of ENSINERT | | Extraction Engine Node Noi\e Lo 3
microservices is trusted. Cl Server ! carvi . | ' L AL
5 + Service Build | <ervice (P S ™ | 5
. : : it ! N : - . . ermission Engine | | | --+--
;Fhef behavmrs. ;hat C\{mlalt.e.code Code Submit . Ser'vllce E | Registration | 5 aEl _+E_ rtad C D |
ogic are considered malicious. : : Policy Generator || @~ % . ~ .
5 Source code | | = Y : ,
e The source code of of Service E !Service i\ —|_Policy Dli<_\ Change Handler |, ,E . Microservice
microservices can be obtained. ' \ | Infrastructure
|

Figure 1. The system architecture of JARVIS.

Methodology

1. Request Extraction 2. Policy Generation 3. Policy Updating
(TTTT T T T T T (TTTT T T T T T oI T T < T N (T T T T T T T \
 Source COderhi Manifest File :I 1) Manifest File \ :(Access (.'_ontrol i : Updated Ac.c.ess :
' 2) Service Registration i ____Policy ._Control Policies
I. Identifying the statements that initiate | 3) Inter-Service Traffic |
network API invocations. '\\ Management Rules é Operation
II. Performing program slicing form 7777777777 T TTTT Microservice New Version Deploy
these statements. 1) Manifest File: What requests a microservice may initiate. Update Old Version Delete
ITI.Extracting the details of the 2) Service Registration: What APIs a microservice provides. , , New Rul AOD|
invocations from program slices ; : Inter-Service Trattic SW RUIE PPl
prog : 3) Inter-Service Traffic Management Rules: Where the
. : Management Rule Old Rule Delete
requests will eventually arrive.
id - 28 Backward Taint Change Old Rule Update
: Propagation Service B - v1 | Service A - v2 Table 2. Changes in microservice applications.
endpoint = "http://example:9080" Service A — V1 * Service-based policy]
Permiss SSiON 1 aggregation Two-stage change handling
url = endpoint + "/" + str(id) Permiss Parmission 1 ission 2 + Version-aware policy [. Quickly determining 1.f.the change will affect
res = requests.get(url) | Parmicst the access control policies.
ermission 2 management L
II. Incrementally adjusting the access control
Figure 2. Program slicing. [policies 1f they need to be modified.

Preliminary Result Discussion

* Benchmarks: Bookinfo, Hipster Shop, and Sock Shop Unable to obtain the source code of microservices. (not common)
* Ground Truth: Manual analysis * Requesting the manifest files from the service providers.
. . Extracted Requests * Manually cqnﬁgqring access control policies.
anguage Microservices HTTP gRPC TCP » Reverse engineering.
Java 6 5 (100%)] > (100%) * The source code can not be truste:d. |
]] * Involving the administrator in the review of manifest files.
Python 3 3 (100%) 1(100%) - I | .
o .] 19 (100%) 28 (100%) ncomplete reqpest egtractlon. S
.)) * The number of mnvocation protocols and corresponding libraries 1s limited.
Javascript 4 28 (100%)) 2 (100%) * The administrator can add semantic models for their dedicated libraries.
Ruby 1 1(100%) - -
c 1 _ - 7 (100%) Acknowledgement

Table 3. The coverage of request extraction for 22 microservices developed in 6 languages.

1.National Key R&D Program of China (2017YFB0801703)

Conclusion 2.The Key Research and Development Program of Zhejiang Province
- EAUN

2018C01088
v JARVIS: The first automated inter-service authorization mechanism ()

* A static-analysis based request extraction mechanism
* A fine-grained policy generation mechanism
« A two-stage change handling mechanism 4 %k R

Nuu st

v" The preliminary result shows the completeness of request extraction Contact Information: xing.li@zju.edu.cn

	幻灯片编号 1

