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a b s t r a c t 

The control plane of Software-Defined Networking (SDN) is the key component for overseeing and man- 

aging networks. As a software entity, the control plane is inevitable to involve design or logic flaws in 

its policy enforcement and network control, which can cause it to behave incorrectly and induce net- 

work anomalies. Existing approaches mainly focus on policy verification or fault troubleshooting, which 

have little fault localization capabilities for locating these flaws in production environments. In this pa- 

per, we present Falcon , the first Fa ult l ocalization tool for the SDN con trol plane. We design a novel 

causal inference mechanism based on differential checking , which symmetrically compares two system 

behaviors with similar processes and identifies the causality in related code execution paths with con- 

crete contexts to explain why a fault happened in the SDN network. Our main contributions include (1) 

a lightweight rule-based hybrid tracing mechanism for recording system behaviors of the SDN control 

plane, (2) a context-aware modeling mechanism for modeling these behaviors, and (3) a differential check- 

ing mechanism for diagnosing controller faults according to formulated symptoms. Our evaluation shows 

that Falcon is capable of diagnosing faults in the SDN control plane with low overhead on performance. 

© 2019 Published by Elsevier B.V. 

1

 

c  

(  

p  

o  

w  

a  

m  

a  

s  

t  

t  

t  

2

(

h

k

(

W

c  

b

 

n  

c  

i  

a  

c  

a  

a  

[  

b  

c  

a

 

h

1

. Introduction 

Separated from the data plane, the control plane in SDN is logi-

ally centralized for networking. It leverages southbound protocols

e.g., OpenFlow (OF)) to govern traffic in the data plane and ex-

oses various northbound interfaces (NBI) for external applications

r other high-level affairs (e.g., NFV orches trator) to control net-

orks. In current SDN solutions [2–4] , the control plane performs

s a network operating system with various core and application

odules 1 , where network management policies are implemented

s modules’ code logics and mutual dependencies. Moreover, for

cale network management and high availability, the SDN con-

rol plane is typically physically distributed, in which several con-

rollers coordinate with each other via eastbound/westbound pro-

ocols. The modular and physically distributed nature of the SDN
� A preliminary version of the article has been published in Proceedings of the 

019 IFIP/IEEE International Symposium on Integrated Network Management (IM) 

Washington DC, USA, April 8–12, 2019) as a 7-page mini conference paper [1] . En- 

ancements over the conference version are highlighted in Section 1 . 
∗ Corresponding author. 

E-mail addresses: yyb@whu.edu.cn (Y. Yu), xing_li@zju.edu.cn (X. Li), 

aibu@zju.edu.cn (K. Bu), ychen@northwestern.edu (Y. Chen), yjf@whu.edu.cn 

J. Yang). 
1 It is also called application agent [2] , plugin bundle [5] or control program [6] . 

e use them interchangeably. 
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ontrol plane are the significant features that guarantee the flexi-

ility and capability of network service provision. 

Unfortunately, as a software system meeting with complicated

etwork dynamics, the SDN control plane is error-prone [7–9] . The

ontrol plane is typically reactive and event-driven that it detects

nput events (e.g., OF messages and NBI requests), processes them

nd takes actions following specific code logics. Thus, the root

auses behind faults in SDN, like network anomalies (e.g., unreach-

bility or forwarding loop) and incorrect NBI responses, are usu-

lly flaws in control logics implemented in the SDN control plane

7,10] . However, figuring out these defective logics is non-trivial

ecause they may be non-deterministic (i.e., context-dependent),

ross-module and mixed with asynchronous and concurrent network

ctivities [7,8] . 

To locate the root causes of faults in the SDN control plane,

nfortunately, existing solutions have some limitations: (1) Some

esearch efforts [6,11] use formal methods to verify the correct-

ess of network policies or abstract program models. They rely on

anual or static analysis to model policies or programs, which is

ime-consuming, error-prone and cannot handle dynamic changes

f network and software in production environments; (2) Blackbox

esting is another approach to identifying the input event set trig-

ering the controller to fail [7,8] . Given the set, operators still need

o manually locate the root cause in their codes. Hence, how to di-

gnose faults in the SDN control plane is still an open issue. The

https://doi.org/10.1016/j.comnet.2019.07.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.07.007&domain=pdf
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mailto:ychen@northwestern.edu
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Table 1 

Fault types in ODL Bugzilla and the comparison of Falcon and related 

work ( ●= diagnosed, f = partially diagnosed, ◦ = not diagnosed). 

Fault Category Proportion CT PA PV Falcon 

Logic/design Flaw 66% ● ● ● ●
Coding Mistake 12% f ◦ ◦ ●
Performance Anomaly 22% ◦ ◦ ◦ f 

Providing Root Causes × � × � 

Adapting to dynamic changes � × � � 

Introducing low overhead � � � � 
three-layered network architecture and distributed control plane

make previous network or software diagnosis mechanisms inappli-

cable. Thus, we need to touch the inner side of the SDN system to

point out which part of the control plane and why the part goes

wrong. 

In this paper, we design Falcon , the first fault localization

system, which can identify the detailed root causes of faults in

the SDN control plane. Falcon is a gray-box solution. It per-

forms a rule-based hybrid tracing mechanism on controllers’ byte-

code to precisely track the system behaviors of SDN at runtime,

including northbound/southbound interactions between two adja-

cent planes, program executions inside the controller, as well as

westbound/eastbound interactions among distributed controllers.

With these behavior data, Falcon further models them through a

deterministic context-aware model mechanism and mines depen-

dencies among input events as the collaborative behaviors. These

models under normal conditions are regarded as diagnosis refer-

ences . When faced with a failure, Falcon first identifies the faulty

behavior models and corresponding references, and then performs

differential checking on them. The differential checking is a mecha-

nism which symmetrically compares these models and points out

the causality of their differences to answer the diagnosis question

about not only how the fault occurred by providing a minimal set

of input events, but also why it occurred by identifying a minimal

set of state differences in relevant code execution paths. We aim

to determine the causality with minimal but sufficient information

to describe a root cause. 

We have built a prototype for OpenDaylight (ODL) platform

[3] . It conducts online system behavior monitoring for the con-

trol plane in a production environment and performs offline di-

agnosis with an event replay mechanism in a simulation environ-

ment to avoid affecting other normal services. Specifically, when a

failure occurs, it sends the recent behavior models and references

recorded in the production environment to the simulation environ-

ment, where we use an extended STS simulator [7] as a replay en-

gine to simulate data/application planes and replay input events

for fault diagnosis. We evaluate Falcon with several types of faults

in SDN controllers. The result attests its capability to reveal root

causes with involving low performance impact, even optimizing

the efficiency of controllers handling of input events under the rel-

atively low workload. Such a performance impact is thanks to byte-

code optimization enabled by our used instrumentation tool. 

We highlight the major contributions to diagnosing faults in the

SDN control plane as follows: 

• A comprehensive study of faults in the control plane ( Section

2.1 ); 

• A rule-based hybrid tracing mechanism built on bytecode in-

strumentation, which tracks system behaviors in the control

plane ( Section 4 ); 

• An online system behavior modeling mechanism which de-

terministically models SDN system behaviors ( Section 5 ); 

• A fault localization mechanism based on differential check-

ing and static analysis which locates precise root causes of

occurred failures ( Section 6 ); 

• A complete implementation of Falcon for ODL ( Section 7 )

and an evaluation to attest its practicality ( Section 8 ). 

This paper is an extended version of the work presented [1] ,

which has illustrated the effectiveness and practicability of Fal-

con for the single controller mode. Besides giving details on the

background of SDN fault diagnosis ( Section 2 ), this paper enhances

Falcon for the physically distributed SDN control plane with many

techniques, such as adding the static recovery mechanism ( Section

4.4 ) for obtaining fine-grained system behaviors, extending the

system behavior modeling with detailed trace graph construction,

fast model comparison, and cross-controller trace behavior asso-
iation ( Section 5.1 ), presenting the detailed fault localization al-

orithm ( Section 6 ), more comprehensively implementing Falcon

 Section 7 ), evaluating its diagnosis capability ( Section 8.2 ) and an-

lyzing its performance ( Section 8.3 ). 

. Background and motivation 

To motivate our solution, we conduct a fault measurement in

he SDN control plane and review related works focusing on diag-

osing faults in SDN networks. 

.1. Faults in SDN control plane 

Designing a feasible fault localization technique for SDN re-

uires a deep understanding of SDN faults. Thus, we survey

ontroller-related faults (also called bugs) found in literature [6–

,10,12,13] and report the first analysis of bugs in a real SDN con-

roller bug repository, ODL Bugzilla [14] , in which we analyze all

98 confirmed bugs of ODL kernel projects [5] until October 16,

017. For clarity, we classify these faults into three categories in

ccordance with their root causes as follows: 

Logic/design flaw : To manage networks, various network policies

re implemented in SDN control software with specific code logics .

owever, these logics may not always be designed correctly and

ven conflict with each other due to insufficient domain knowl-

dge or misplaced assumptions [6,7,15] . For example, in [16] , a bug

s found that it can make ODL generate FLOW_MOD packets with

mproper fields set hierarchy and finally cause control/data state

nconsistency. The culprit is the incorrect code logic of FLOW_MOD
eneration. In addition, input events in some specific order may hit

ome unconsidered corner cases of the current design and be pro-

essed incorrectly or discarded directly, even trigger harmful data

aces which can crash the controller [13] . We name this type of

aults logic/design flaw . 

Coding mistake : Careless programming in the implementation of

ode logic can cause a variety of software or network errors, e.g.,

ata race, null pointer, and incorrect rule distribution. Although

any coding mistakes can be found and handled promptly in cod-

ng or testing stage, it is not possible to exhaust all of them, e.g.,

ncorrect usage of service identifier [17] . In [12] , the author also

howed that there are a lot of unreasonable memory allocations in

ontrollers which can cause controllers to crash. 

Performance anomaly : SDN controllers often suffer from central-

zed bottleneck problems in practical applications [12] . One rea-

on is that they are usually installed on common servers with

imited processing and I/O capabilities. In addition, their inherent

synchrony and concurrency also exacerbate performance issues

12] and result in various failures, e.g., partial failure in batch op-

ration, message timeout or omission, data race, and even system

rash. We mainly focus on these performance anomalies that can

ead to different internal executions at different runs. For example,

he delay in data reading due to I/O delay may introduce data race

mong concurrent threads. 

We summarize our measurement in Table 1 . Logic/design flaw is

he most popular categories (66%) in all analyzed bugs and usually
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2 Only if two OFPT_HELLO messages for protocol version negotiation are 

successfully processed, the standard OF messages can be exchanged, e.g., 

OFPT_FEATURES_REQUEST , OFPT_PACKET_IN [23] . 
as a higher need for diagnosis [14] . Furthermore, we observe that

ost of logic/design flaw bugs and partial ones in the other two

ategories can raise abnormal code execution traces in the con-

rol software, which are deviated from the desired execution traces

here these bugs will not happen. This observation inspired our

ault localization mechanism based on differential checking for ex-

cution paths. 

.2. Related work 

Given that the SDN controller is a software entity, diagnosing

hese preceding faults certainly requires some general diagnostic

echniques proposed for common software, such as static analysis

nd dynamic detection. Many studies based on software diagno-

is have been proposed for SDN fault diagnosis. We classify these

elated works into three categories as follows: 

Controller Troubleshooting (CT) focuses on identifying an input

vent sequence which can trigger a fault in controllers. Scott et al.

18] proposed a troubleshooting tool ( W 

3 ) for SDN networks. It

an compare the high-level policies (specified in the control plane)

ith low-level configurations (installed in the data plane) to find

olicy-violations and then identify the minimal causal set of events

y reproducing the violation with the arbitrary sequential ordering

f interaction events in a simulation environment. Based on W 

3 ,

he authors further designed STS [7] , which involves fuzzing test-

ng to test controllers and identifies the exact input events trig-

ering occurred failures via event replay and decremented event

limination. Jury [8] attempts to detect which controller in a clus-

er is erroneous by comparing the action differences for the same

nput event. Conguard [13] is proposed to find data races in SDN

ontrollers by changing the order of input events to trigger com-

etitive read-write operations. 

Program Analysis (PA) is often used to analyze the correctness

f SDN applications with desired properties [6,11,19] . NICE [6] uses

odel checking and symbolic execution to model a control pro-

ram and figure out its invariant violations. Nelson etc. [11] model

wo versions of an SDN control program written in a declarative

anguage to find their differential properties and counterexamples.

iffProv [19] models the status of each flow rule generated by ap-

lications as a provenance tree and performs a differential prove-

ance to identify differences between faulty and correct trees for

ault diagnosis. It is similar to our solution but focuses on the cor-

ectness of flow rules. 

Policy Verification (PV) [20–22] examines the network models

uilt from OF rules with a set of network invariants, e.g., no for-

arding loops or no black holes. It incrementally builds the net-

ork model as the network evolves by monitoring change com-

ands (OF rules) generated from the controller. With the model,

t verifies if every change on the network can violate defined in-

ariants or affect existing traffic. Hence, these works can check the

orrectness of network policies in the controller in real-time. 

We further compare these works, as well as Falcon in Table 1 ,

n terms of 4 solution goals: (1) covering more types of faults; (2)

roviding root causes; (3) adapting to dynamically changing net-

orks/controller architectures; (4) introducing low overhead to the

ontrol plane. CT can basically cover two bug categories, but they

annot provide the detailed reason why the controller is faulty. Al-

hough PA can provide root causes, manual or static analysis they

elied on makes PA suffer from state-space exploration problem

nd difficult to be applied in dynamic changing productive SDN

ontrollers. PV approaches can only indicate if there is a fault in

he current network and are complementary to Falcon that they

an use their detection results to trigger Falcon for detailed fault

ocalization. These three kinds of works still suffer from limitations

or diagnosing controller faults at runtime in a production envi-

onment, which motivates us a two-environment-based diagnosis
echanism. Since Falcon tracks runtime system behaviors and di-

gnoses faults in an additional simulation environment, it can pro-

ide more diagnosis capabilities and low impact on performance. 

. Overview of FALCON 

In this section, we give the overview of Falcon from three as-

ects: the basis of our diagnosis mechanism, major faced chal-

enges and the architecture of Falcon . 

.1. Basis of FALCON 

A common software fault diagnosis problem is that given a

ailure, how we can identify its causality from the software and

orm the causality as an understandable output. However, under

he SDN context, this problem becomes complex since SDN con-

rollers need to simultaneously process dynamic network events

rom the data plane and northbound requests from the application

lane under collaborative logics, as well as cluster events among

istributed controllers. Thus, to locate the root cause of an oc-

urred failure, we need to identify these events and relevant inter-

al executions in SDN controllers and associate them as an under-

tandable diagnosis result. To address such problem, we leverage

wo major properties of SDN control plane faults to seek a feasible

olution: 

(1) Incorrect internal executions : as described in Section 2.1 ,

ost faults in the SDN control plane are caused by logic or de-

ign flaws, which violate correct program logics and cause devi-

tions from desired program executions. Non-determinism of the

ontrol plane makes these faults more complicated. Specifically,

he controller follows context-dependent code logics to process in-

ut events and changes in contexts may trigger an unexpected run

hat cannot be handled properly due to defective design and im-

lementation of these logics [7,10,13] . 

(2) Disordered input events : the interactions between SDN con-

rol and other planes often follow some fixed orders, which are

efined in southbound protocols or code logics in controllers and

pplications for collaborative services. As mentioned in Section 2.1 ,

he disorder of input events can induce a different set of internal

nvocations inside the control plane which may trigger failures. For

xample, to build an OF connection, a series of messages 2 are gen-

rated in order between the switch and controller, the disorder of

hese messages will trigger data race [7] . 

With the first property, we realize that the root cause of the

ault exists in execution path deviation. Thus, for locating the root

ause, we need to identify where the incorrect internal executions

appen. The second property notes that there are dependencies

mong external input events of the control plane and the fault may

e caused by a series of interrelated external input events rather

han a single event. Thus, the occurrence sequences of input events

re another import data for reasoning root causes. Based on these

roperties, we design Falcon , a differential f ault localization system,

o locate the root causes of failures in the SDN network which sug-

ests the presence of a fault in the control plane. 

.2. Design challenges and solutions 

Because of the complexity of SDN environments, implementing

alcon will naturally raise the following challenges, which are ad-

ressed in our detailed design: 

Recording fault evidence : Accurate fault diagnosis relies on suffi-

ient evidence. Here, the evidence is the system behavior of the
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Fig. 1. An overview architecture of Falcon . 
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3 Bytecode is a form of instructions compiled to run. 
SDN control plane. To trace such system behavior, existing trac-

ing mechanisms, however, suffer from several problems. Deploy-

ing a channel proxy outside of controllers is a common approach

to obtaining interactions between two adjacent planes [21,24,25] .

Unfortunately, this approach can only provide partial system be-

haviors and introduces extra communication delay. Software-based

static analysis and logging mechanisms are also applied to diagnos-

ing faults in SDN networks [6,7,11,26] . They, however, may be in-

efficient for the control plane: static analysis may suffer from the

state-space explosion problem and be time-consuming to extract

software behaviors from control programs [6] ; logging mechanisms

(e.g., Log4j [27] ) are deployed into source codes in an ad-hoc man-

ner, which is inflexible and may result in incomplete behavior log-

ging with massive noise data [28] . What’s more, programmers have

to manually analyze log files and diagnose faults depending on

likely subjective assumptions and experiences, which is tedious.

To address this challenge, we design a rule-based hybrid tracing

mechanism in Section 4 to record running contexts via bytecode

instrumentation and recover fine-grained execution paths via static

analysis on controllers’ bytecode. 

Modeling system behaviors : Falcon aims to model system behav-

iors from dynamic trace data. However, several factors challenge

it. Firstly, due to the concurrency of networks, multiple event (e.g.,

OpenFlow messages) processing tasks in the controller are exe-

cuted in parallel and thus, collected traces are interleaved. Even in

a single task, various asynchronous operations complicate the exe-

cution traces and there is no unique identifier propagated through

internal invocations. Secondly, the existence of cross-controller in-

vocations (e.g., leader election) distributes trace data in differ-

ent cluster nodes and then poses challenges to analyze these dis-

tributed data, especially when facing potential unsynchronized in-

ternal time. Therefore, it is difficult to associate these data with

their tasks. Moreover, the non-determinism of control logics means

with the same input, the controller may exhibit different behav-

iors under different system contexts [7,8] . Thus, given an input

event with concrete values, it might be hard to infer its deter-

ministic execution path. To address this challenge, we design a

context-aware modeling mechanism in Section 5 to cluster trace

data and model their causal relationships with concrete contexts

as a context-aware behavior model, with which we can provide de-

terministic models of system behaviors. 

Diagnosing an occurred fault : In the SDN environment, fault

diagnosis is faced with not only various failure symptoms but

also complicated behaviors in different planes. As we discussed

in Section 2.2 , how to diagnose these faults in the control plane

quickly and accurately is still an open issue; the existing SDN fault

diagnosis techniques (i.e., CT, PA, and PV) are insufficient to reveal

the root causes of faults and adapt to a distributed SDN control

plane’s dynamic changes. In order to address this challenge, we

formulate symptoms occurred in different planes as the diagno-

sis input and design a differential checking mechanism to locate

the root causes ( Section 6 ). By comparing faulty and correct system

behavior models, we aim to identify the minimal but sufficient sys-

tem behaviors with concrete contexts and succinct code execution

paths as the diagnosis report. 

3.3. Architecture of FALCON 

Given these challenges of fault diagnosis in the SDN environ-

ment, we present the architecture of Falcon in Fig. 1 , which con-

tains two parts: production environment and simulation environ-

ment . The production environment records and models system be-

haviors in real production runs and the simulation environment

provides the fault localization. Note that the two environments

are reasonable in the real world. Support engineers usually collect

system configurations and faulty data in productions provided by
sers and reproduce failures in this own simulation environment

o understand and diagnose them without interfering with the pro-

uction environment. 

In the production environment ( Fig. 1 (a)), we deploy a trace

gent inside every controller in the cluster and an online monitor

utside of the distributed control plane. These trace agents track

ctivities in controllers at runtime and send them out. The on-

ine monitor collects and aggregates the trace data, models them

s system behavior models and stores them as references when

here is no fault. Note that Falcon does not provide failure detec-

ion function and relies on operators reporting if a failure occurs.

perators can use existing network failure detectors (e.g., ping and

raceroute) and log file console to find if there is a failure occurred

n the network or controller. When a failure occurs, we transmit

he recent behavior models to the simulation environment since

here must exist a set of models reflecting the fault’s causality. 

To diagnose the failure, a new controller cluster is instanced in

he simulation environment ( Fig. 1 (b)) with the same configuration

nd internal states of the production one through controller restore

echanisms [29,30] . We leverage an event replay engine to simu-

ate the data/application planes and reproduce practical failures by

trictly replaying collected input events. The offline diagnosis system

erforms the differential fault localization to identify the causality

f a fault and output it as the diagnosis report . The usage of the two

nvironments can guarantee both the authenticity of the diagnosis

ata and the accuracy of the diagnosis results. 

. Hybrid system behavior tracing 

In this section, we present a hybrid system behavior tracing

echanism based on bytecode 3 instrumentation for dynamically

ecording SDN system behaviors and static analysis for recovering

ne-grained execution paths. Performing instrumentation on byte-

ode requires neither modification of controller’s source code nor

estart of the controller. We design a rule-based instrumentation

echanism to ease the configuration of dynamic tracing and con-

rol it to a relatively coarse granularity, module-level , to reduce the

verhead. Combining with static recovery inside the modules, Fal-

on achieves a balance of accurate invocation path construction

nd low performance cost. 

.1. Target data 

In order to get enough data which can reflect system behav-

ors in the SDN control plane, we should be clear about what

ata we need to record. Since the control plane is reactive and

vent-driven, the interactions (i.e., input and output events, e.g., OF

essages and NBI requests) between the control and other planes
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Fig. 2. An in-rule example for Packet_Out . 
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eed to be tracked. These interactions trigger the internal process-

ng inside the control plane. Thus, we also need to record inter-

al method invocations to reveal the execution paths of the in-

ernal processing. In addition, system state changes can affect the

ontroller’s behaviors due to the non-determinism. Therefore, we

eed to record the reading and writing operations of values in the

atabase, which represent the current system states. 

From the perspective of the controller cluster, although most

asks are processed in a single controller node, the handling of

ome special tasks involves invocations across controller nodes

e.g., routed RPC ). In addition, the roles of controller nodes in a

luster also have a significant impact on event processing. For ex-

mple, only the leader controller of a database shard 4 can perform

 write operation on it and the other write operations of the shard

n follower controllers need to be routed to the leader. There-

ore, to build a global system behavior model, the identities and

oles of controller nodes, as well as important cluster events (e.g.,

eadership changes) need to be taken into account and carefully

ecorded. 

.2. Dynamic tracing 

Dynamic tracing can provide the above sensitive execution in-

ormation of the SDN control plane at runtime, but at the cost

f computing performance. As a software entity, not all of the

DN controller’s execution information needs to be dynamically

ecorded. Given some key execution points and corresponding con-

exts, we can recover the entire execution path through static

nalysis. Thus, to find a feasible granularity of dynamic tracing,

e leverage the following observations of mainstream SDN con-

rollers [3,4] : (1) Their modular nature indicates that their most of

vent processing tasks are handled under the collaboration among

ultiple modules; (2) All modules operate on a logically central-

zed database; (3) Invocations among modules depend on pre-

efined module interfaces, e.g., RPC and Notification; (4) Faults

n controllers commonly originate in logic flaws inside a module

nd then may propagate to other modules through invocations or

atabase operations. Thus, controlling the dynamic tracking of the

ontroller’s internal invocations at a module-level is sufficient for

roviding dynamic contexts, which can highly reduce the amount

f inserted codes, thereby greatly lowering the overhead. Taking

DL as an example, we can intuitively feel the quantity gap be-

ween module-level and method-level: To manage networks, ODL

ften installs around 300 modules, each of which may offer sev-

ral to hundreds of class files, and a class may contain several to

ozens of methods. 

.3. Rule-based instrumentation 

To track the system behavior data at module-level, bytecode in-

trumentation is an efficient approach, which allows users to insert

pecific code into programs and track their desired code behav-

ors. However, it is typically challenging for operators to determine

here and what code can be instrumented. What’s more, they may

ot be familiar with bytecodes. To address these problems, we de-

ign a rule-based instrumentation mechanism to ease the instru-

entation process. With this mechanism, operators only need to

pecify their expectant tracing feedback in instrumentation rules

abbreviated as in-rules ), and then the instrumentation mechanism

ill automatically translate these in-rules into bytecodes and in-

ert them into corresponding positions in controller bytecodes. 

An in-rule is a < match, action > tuple (see Fig. 2 ). The

atch field is used to match against bytecodes for specifying
4 A database shard is a horizontal partition of data in a database. 

a  

l  

t  
here to insert codes, which consists of three name ( module ,
lass , and method ) and one location ( call site ) sub-fields.

he three name sub-fields follow the code hierarchy of modular

bject-oriented-programming-based software to focus the in-rule 

n the method ’s code segment. The call site represents the

ocation of instrumentation, which is defined by a location before

 B ) or after ( A ) a bytecode instruction with the line number in

he code snippet. The action field defines execution contexts that

eed to be profiled, e.g., controller ID, thread, timestamp, invoca-

ion type, and variable values. For convenience, in Fig. 2 , we use

 source code segment rather than bytecode with an in-rule as an

xample, in which the in-rule is used to track contexts of send-

acketOut in the module with ID 212 (ODL L2switch Arphandler

odule). 

Covering expected traces by manually specifying in-rules is un-

easible. Falcon only requires operators to specify the in-rules

or capturing input/output messages (e.g., RESTful requests and

F messages) and list the invocation interfaces (e.g., RPC, notifi-

ation) that are used in invocations among modules. Then, Fal-

on transforms the corresponding controller bytecodes into con-

rol flow graphs (CFGs), searches the invocations of these interfaces

n them, and automatically generates in-rules for tracing them.

inally, Falcon translates these input and generated in-rules into

ytecodes and inserts them into the controllers according to in-

ule match fields. At runtime, these execution contexts defined in-

ules will be profiled and output as trace messages. 

.4. Static recovery 

Although for many faults, the deviations of faulty execution

aths can be reflected in module-level trace messages (about 70%

ccording to our fault measurement, e.g., data race among mod-

les), there are still some faults that need method-level invocation

aths to figure out execution deviations as the root cause. Adding

ore in-rules to obtain fine-grained trace messages is not feasi-

le due to overhead. Thus, Falcon leverages mature control flow

nalysis techniques on bytecode to recover fine-grained executions

rom collected module-level trace messages. Specifically, given two

djacent module-level trace messages originated in the same mod-

le, we extract their locations (i.e., the match field of their in-

ules) and perform static analysis to identify the execution path

nside of the module between their locations. Thanks to concrete

ontexts in the two messages, we can narrow down the state space

f static analysis and obtain the deterministic execution path. Note

hat we do not consider the invocation routing among modules

ince it is application-agnostic and maintained by controllers. 

. System behavior modeling 

Given trace messages, we now address the problem of system

ehavior modeling. Starting with a trace message representing the

eginning of a task which handles an input event (e.g., an OF mes-

age or NBI request), we process heavily interleaved trace messages

nd identify relevant internal invocation nodes and their causal re-

ationships to construct a context-aware model at run-time. We fur-

her perform backtrace on mined models with static analysis to
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Fig. 3. A trace graph for a control plane task. 

Fig. 4. Conditional branch example in controller software. 
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Fig. 5. Three types of graph edges. 
mine the dependencies among them, which can make our models

be accurate to capture collaborative properties in the SDN system. 

5.1. Context-aware system behavior modeling 

To process input events (i.e., controller tasks), the controller

maintains multiple event handlers, each of which uses multiple

threads to execute different operations . As shown in Fig. 3 , each

operation is executed within a thread with several synchronous

invocations and may also involve other operations through asyn-

chronous invocations. In a controller cluster, asynchronous invoca-

tions can be further divided into asynchronous invocations within

a controller node and across controllers for handling some spe-

cial tasks (e.g., routed RPC). Thus, an operation can be triggered

by an input event or an asynchronous invocation. In an operation,

these synchronous invocations can be linked with their happens-

before relationships as an invocation chain graph. Among opera-

tions, their asynchronous invocation relationships can be used to

link these chains into an invocation tree graph. With these two

types of relationships, invocation messages for processing a task

can be constructed as a trace graph. Moreover, given different con-

texts, a task may produce multiple heterogeneous trace graphs due

to non-determinism. Fig. 4 is an example that various conditional

branches (e.g., if . . . else ) with different contexts can result in various

execution paths. 

To model such behavior of each task, we, however, are first

faced with heavily interleaved trace messages. Thus, we cluster

trace messages for different tasks and then associate the trace

messages of each task with two types of causal relationships

( happens-before and asynchronous ) to construct them as a trace

graph. Finally, we combine heterogeneous trace graphs of each task

as a context-aware model (CAM). We describe the construction as

follows: 

Trace graph. Once getting a trace message, Falcon transforms

it into a graph node by node template defined in-rule’s action
field, i.e., a set of invariant keywords (e.g., “event = ”) and vari-

ables. Inside a single controller, the node shall belong to an op-

eration of a task (i.e., a chain graph). In the controller cluster, each

controller handles transactions relatively independently and only

makes cross-controller invocations in limited circumstances (e.g.,

remoted RPC, data change notification). For a task, each controller

has a relatively complete trace graph and these trace graphs can be

associated with these cross-controller asynchronous relationships,

which we called the locality of cross-controller invocation. Hence,

the node shall be clustered into the corresponding controller for
raph construction. Falcon clusters the node into a growing chain

raph of an operation according to its both controller ID ( I c ) and

hread ID ( I t ). Each chain graph starts with an initial node repre-

enting an operation, associates all synchronous invocations belong

o the operation by their happens-before relations with the same

 

c and I t , and is completed by the terminal trace message of the

peration. 

We further combine chain graphs according to their asyn-

hronous relationships inside a controller and across controllers.

ince there is no identifier propagated through asynchronous in-

ocations, we design a multi-identifier correlation mechanism, in

hich we construct a tuple containing multiple identifiers to de-

ne asynchronous callers and match asynchronous callees. Specif-

cally, the tuple contains the caller’s I c , I t , location in its chain

raph, timestamp and hashcode-based abstraction of its variable

alues. If the caller’s chain graph originates from another asyn-

hronous invocation, we also add a parent-child path between the

raph and its parent graph into the tuple. We then use this tuple

o match asynchronous callee nodes in different controllers. Finally,

ll chain graphs of a task distributed in the controller cluster are

ombined into a global trace graph. . Algorithm 1 describes the de-

ailed trace graph construction. 

Algorithm 1: Online trace graph construction. 

Input : A trace message m from the trace stream 

Output : A tree graph 

Global : Pool Set � of < I c , I t , g>; Tuple set B for asynchronous 

invocations; Uncompleted tree graph set G ; 

1 n ← TransformIntoLogNode ( m ); 

2 g ← ∅ ; 
3 if n is an initial node then 

4 if < I c n , I 
t 
n > ∈ � then 

5 g ← PutToTree ( �, n, G, B ); 

6 � ← �∪ InitializeChain ( n ); 
7 else 

8 g n ← getGraph ( �, I c n , I 
t 
n ) ∪ n ; 

9 if n is a terminal node then 

10 g ← PutToTree ( �, g n , G, B ); 

11 else 

12 � ← � ∪ g n ; 

13 if n is an asynchronous caller node then 

14 B ← B ∪ GenerateTuple ( g n , n ); 

15 if g � = ∅ and IsComplete( g) then return g; 

16 else return ∅ ; 

Context-aware model. A CAM contains three kinds of edges (see

ig. 5 ): (1) A concrete edge has a pair of preceding and succeed-

ng invocation nodes representing their happens-before relation-

hip; (2) A fork edge has multiple succeeding nodes (one is a con-

rete successor and others are asynchronous callees), which mod-

ls asynchronous relationships; (3) A contextual edge has different

ucceeding nodes under specific contexts, which is context-aware
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Fig. 6. An example of a trace graph combination. 
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or modeling data-dependent code logics. We say that in the code

ogic between the two nodes of a concrete edge, if there is a con-

itional branch (e.g., in Fig. 4 ) varying the edge’s succeeding invo-

ations under different condition values (i.e., contexts), the edge is

hen transformed into a contextual edge with an additional context

eld to record the condition. 

We take Fig. 6 for example to discuss the construction of CAM.

irstly, to combine the trace graphs belonging to the same task, we

eed to distinguish the heterogeneity of each new coming trace

raph. However, comparing two trace graphs node by node from

he root node is time-consuming. Thus, we simplify this procedure

y abstracting each trace graph as a hash-based skeleton tree . In

he skeleton tree, a node is an abstraction of a chain graph and

dges follow original relationships among chain graphs; the ab-

traction of the chain graph is a hash value for the string concate-

ation of its nodes’ ID in order; the node’s ID is a hash value for

he string concatenation of its controller ID, module ID, event type,

nd variable names. This skeleton tree is incrementally built up as

he trace graph construction. Through this skeleton tree compari-

on mechanism, we quickly confirm whether a new coming trace

raph is identical with an existing trace graph (or a CAM) and if

ot, where are their differences. From their differences, we iden-

ify the conditional branch that leads to the two different edges

 e 1 in Fig. 6 (a) and (b)) from the CFG of corresponding bytecodes.

e then combine the two edges into a contextual edge ( ce 1 ) with

he branch that decides the succeeding nodes according to their

ontexts. Fig. 6 (c) depicts the final CAM, in which from V b has two

ossible succeeding nodes: V c and V d . 

.2. Augmentation with model dependency 

Since SDN controllers are event-driven, their contexts are

ainly introduced by external input events. Thus, contexts in these

onditional branches come from their input events or previous

asks. Taking Fig. 4 for example, the action (send PacketOut or

ood packet) of processing a flow rule request depends on if the

estination host has been recorded in the controller’s database.

ollowing the second property in Section 3.1 , there may exist tem-

oral dependencies among several input events and their corre-

ponding internal system behaviors. A temporal dependency is an

ssociation property of two or more input events generated for col-

aborative services. Mining such dependencies among task mod-

ls can further address non-determinism and provide references

n another dimension for diagnosis since many faults are context-

ependent. 

To mine temporal dependencies among task models, we lever-

ge static analysis to figure out data dependencies of their con-

rol logics. We start from the contexts of branches in contextual

dges to identify their dependencies. A context can be introduced

y a single input event or a set of input events in a specific order.

ence, given a context, we iteratively backtrack current and previ-

us models to search the operations who insert or update its value

nd identify their corresponding input event or the sequence of in-

ut events. If the context is introduced by a previous input event I s ,

here s is the input value set, we say that the current task model

ontextually depends on I s . With such dependencies, we further
ssociate these two task models to augment mined CAMs. Such

odels are stored as references which result in no failures. 

. Differential fault localization 

In this section, we discuss how Falcon uses mined models to

iagnose faults according to their symptoms. The procedure of Fal-

on ’s differential fault localization consists of 3 phases: (1) parsing

he failure symptom to identify the faulty models and correspond-

ng references; (2) symmetrically comparing them to find their dif-

erences; (3) performing static analysis from their differences to

dentify the related conditional branches and contexts. We sum-

arize this procedure in Algorithm 2 . Falcon mines a set of sys-

em behavior references (denoted by S r ) from the production envi-

onment. When faced with a failure with the symptom f , Falcon

akes the recent behavior model set S f (which contains the models

riggering faults) and f to locate the causality � as follows . 

Algorithm 2: Fault localization. 

Input : f , S f , S r 
Output : �( f ) 

1 C f ← ParseSymptom ( f ); 

2 M f , M r ← FaultyModelLocating ( C f , S f , S r ); 
3 N d ← DifferentialChecking ( M f , M r ); 

4 S c ← StaticAnalysis ( N d ); 

5 foreach context ∈ S c do 

6 context ′ ← ModifyContext ( context); 

7 if EventReplay ( context ′ , S c ) ⇒ f then 

8 S in ← RelatedModelMining ( context); 

9 C f ← C f ∪ ( S in , context); 

10 � ← ResultAggregation ( M f , C f ); 

11 return �; 

From the controller’s perspective, the failure symptoms may be

xplicit that we directly find anomalies from the controller, e.g., er-

or log messages or code exceptions; or implicit that failures occur

n other planes with no error reported in the control plane, e.g.,

etwork problems or unexpected NBI responses. To perform diag-

osis with these symptoms, we formulate them with the following

yntax: 

.1. Faulty model identification 

Given the symptom f of a failure C f , Falcon searches the faulty

odels M f and their references M r from recorded trace data (Line

). Since the controller needs to simultaneously handle a large

umber of collaborative input events from both southbound and

orthbound interfaces, it is challenging to identify valid faulty

odels from massive system behavior models. An explicit symp-

om typically has a timestamp recorded in the log file, so Fal-

on can search related models happened before this timestamp.

or implicit symptoms without precise timestamps, Falcon starts
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Fig. 7. An example of differential checking. 
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6  
from the latest model to search the related faulty models which

are different from the corresponding references in S r . 

6.2. Differential checking 

In this phase, Falcon systematically compares the faulty and

the reference models from their root nodes to identify their differ-

ences (Line 3). The different node is denoted by N d . Taking Fig. 7

for example, there are two heterogeneous models ( Run 1 and 2 )

triggered by the same NBI request I with different contexts ( S 1 and

S 2 ), and Run 2 results in a failure. It is evident that the controller

programs after V b cannot run properly under the contexts S 2 of

Run 2 . Thus, to reason about the failure, we need to report not only

the differences and faulty execution path but also the key contexts

causing this deviation. Since the goal of differential checking is to

find the differences between two models, which is the same as the

model comparison process for the CAM construction described in

Section 5 (i.e., skeleton tree comparison mechanism), we can reuse

this mechanism to figure out their differences and corresponding

contexts leading to these differences. 

6.3. Static analysis 

With the different node N d (i.e., V b in Fig. 7 ), we conduct static

analysis on its bytecode to find out the related conditional branch

and the contexts S c in it (Line 4). Although several contexts are

involved, not all of them trigger the failure. Thus, Falcon lever-

ages delta debugging with the event replay engine to eliminate un-

related contexts (Line 7). In each replay, we change partial con-

texts and replay the changed input event sequence to check if the

failure can still be reproduced. If the failure cannot be reproduced

after modifying a context, we regard the context as a key context

that triggering the failure. What’s more, failure is usually highly

correlated with the current system state (i.e., contexts) introduced

by a sequence of events; the previous events affect subsequent

ones by modifying the contexts. So we also perform backtrace to

mine input events S in that have modified these contexts (Line 8).

Finally, we aggregate the results to generate the final diagnosis re-

port, which consists of the faulty trace graphs, the faulty CAMs and

the corresponding references, and a series of key contexts with re-

lated input events (Line 10). 

7. Implementation 

Falcon is implemented in Java with more than 15,0 0 0 lines of

code, including trace agent, online monitor, offline diagnosis sys-

tem, excluding event replay engine. In this paper, Falcon is only

evaluated in Java-based controllers. Nevertheless, Falcon is gener-

ous since we only need to adopt different underlying instrumen-

tation tools and modify the in-rule translation for other language-

based controllers, e.g., Ryu with Python equip [31] . 

Trace Agent: It is implemented based on several mature tools.

First, we translate in-rules into codes that can be executed by a Java

bytecode manipulation tool, ASM [32] , which allows us to dynam-

ically instrument SDN controllers and provides control/data flow

analysis on bytecode. We then use an inter-thread messaging li-

brary (LMAX Disruptor [33] ) to deliver trace data from multiple
unning work threads to the agent thread which performs data

ransmission. The agent is dynamically attached to the Java virtual

achine (JVM) running an SDN controller through JVM attachment

echanism and is remotely controlled by Falcon ’s Online Monitor

o install in-rules and track the controllers 

Data transmission and collection: To efficiently deliver behavior

ata and other program data (e.g., bytecode file location) out to

he outside Online Monitor , we serialize data via Protobuf [34] , an

fficient structured data serialization mechanism, and utilize Kafka

35] producer to compress these data and transmit them out. The

nline monitor subscribes messages from different controllers on

he Kafka server , aggregates them and finally builds global system

ehavior models. We use different partitions of Kafka topic to re-

eive trace messages from different controllers separately, which

nsures that trace messages from the same controller are con-

umed sequentially. 

Clock synchronization: There exist many happens-before rela-

ionships among trace messages. Thus, we need these messages’

imestamps to associate them. However, since different Falcon

omponents are distributed in different hosts, including these

osts holding distributed controllers and trace agents and the host

olding the online monitor, we need to keep their physical clock

ynchronization to avoid false trace message association. Thus, we

se the Network Time Protocol (NTP) [36] to deploy the online mon-

tor as a time server outside the controller cluster and let each host

eriodically synchronize time with the time server. With NTP, we

an confirm the happens-before relationships of trace messages in

ccordance with their timestamps. 

Event replay engine: To reproduce failures, we implement an

vent replay engine which simulates both the data and application

lanes and sends channel messages to the controller. This engine

s built on STS simulator [7] and we extend it to support the gen-

ration of various northbound requests and southbound network

vents. What’s more, we disable the automatic leader election mech-

nism of the ODL cluster in the simulation environment and use

EST requests to designate the leadership of shards leaders to sim-

late the leadership changing in the controller cluster in the pro-

uction environment. 

. Evaluation 

In this section, we conduct several case studies to assess the

ault localization capability of Falcon ( Section 8.2 ) and design sev-

ral evaluations to measure Falcon ’s performance impact on Open-

aylight (ODL) controllers ( Section 8.3 ). All the evaluations are

erformed on Ubuntu 14.04 64-bit Linux system running on an

.2 Ghz Intel Xeon E2660 v2 processor (16 cores) with 64 GB RAM.

.1. Instrumentation 

As a preparation, our first step is to instrument the con-

roller. We write in-rules for ODL core interfaces and critical clus-

er events, including RSETful request/response, Restconf operations,

penFlow message in/out, RPC, Notification listen, Data change listen

nd Member event . Then, we tell Falcon other invocation interfaces

e concern about (e.g., Notification publish and application-specific

nterfaces). Falcon generates corresponding in-rules after receiv-

ng these desires. With all these in-rules, the controller is instru-

ented and ready to deliver trace messages outside. 

.2. Case studies 

To evaluate the effectiveness of our localization methodology,

e selected 12 real-world bugs from ODL Bugzilla [14] , reproduced

hem and use Falcon to diagnose them. The last two (i.e., Bug-

937, 8885) are bugs in the controller cluster mode. The overall
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Table 2 

Fault localization cases (ODL version: Li = Lithium, Be = Beryllium, C = Carbon, B = Boron, N = Nitrogen). 

Bug ID Description Symptom Project(version) Root cause Category Diagnose 

3345 Ping will fail in ring topology when a link down unreachability l2switch (Li) incomplete topology update design flaw Indirectly 

4969 NPE in JSONCodecFactory NPE in log message yangtools (Be) incomplete YANG support design flaw Yes 

7933 NPE when posting using XML NPE in log message netconf (C) incomplete YANG support design flaw Yes 

6053 NPE on port creation NPE in log message neutron (B) incomplete JSON parsing design flaw Yes 

5033 AAA falsely authorizes user to restricted endpoint unexpected response aaa (B) race condition logic flaw Yes 

5816 Expired hosts never comeback after timing out unexpected response l2switch (Be) constant misconfiguration logic flaw Yes 

7976 Error when closing peers and updating routes error in log message bgpcep (C) race condition logic flaw Yes 

8157 Recreating a user fails after deleting it error in log message aaa (C) defective user deletion logic flaw Yes 

8939 Adding topology-netconf node via restconf fails error in log message netconf (N) interface migration coding mistake Indirectly 

8988 NPE when adding routes to app-peer NPE in log message netconf (N) method misuse coding mistake Indirectly 

6937 Routed RPC in cluster breaks after isolation/heal unexpected response controller (B) incomplete cluster healing design flaw Yes 

8885 New node cannot join existing cluster at runtime error in log message controller (C) incorrect shard initiation design flaw Yes 
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6 A configurable value describing the update interval for addressing changes in 

Addresstracker module. 
7 Connecting callers and callees of routed RPCs for invocations. 
iagnosis results are summarized in Table 2 . Note that different

rom the fault categories in Section 2.1 , we further distinguish de-

ign flaw from logic flaw in this table for clarity, where the former

ugs are caused by incomplete designs and the later are caused by

onflicting code logics. 

The last column of Table 2 describes whether Falcon can iden-

ify the root cause of the fault. We can see that for faults from

ifferent projects with different symptoms, Falcon plays a positive

ole in revealing root causes. For bugs from 4969–8157, Falcon can

uccessfully point out the faulty code logics and key contexts, be-

ause these faults have sufficient reference models. As for fault

ithout corresponding reference model, like Bug-3345, our dif-

erential localization mechanism cannot directly indicate the root

ause, but Falcon can provide corresponding CAMs to the operator,

o that he can get away from the heavy log analysis task and find

he problem more easily with the internal view. We do not con-

uct case studies for faults of performance anomaly , but our trace

raphs contain the time intervals at runtime among different in-

ernal invocations, which can be used as the basis for pinpointing

hich components are responsible for such performance delays. 

For clarity, we take a bug in the single controller mode and a

ug in the controller cluster mode from Table 2 as examples to

xplain the actual fault localization process and demonstrate how

alcon pinpoints the root cause. We run the production environ-

ent with connected Mininet 5 as the data plane. We inject dif-

erent operations into the environment to trigger normal/abnormal

etwork runs. 

Bug-5816 [37] : The ODL controller uses the ODL L2switch plu-

in to provide Layer-2 switch functionality for managing OpenFlow

OF) switches, e.g., processing Packet_In messages and gener-

ting FLOW_MOD messages. There is a host-expiry feature in the

lugin which can make ODL remove hosts that have not been ob-

erved for a long time from the network topology view. However,

ue to the bug [37] , in the reactive mode of L2switch, hosts ex-

ired by this feature cannot be discovered again even if ping works

nd new flows get installed on switches. 

To reproduce this bug, we built a data plane with 10 fully-

onnected hosts by Mininet. When we find a host was expired, we

ing other hosts on this host and successfully observed the bug.

hen, we transmit the resent behavior models to the simulation

nvironment with the symptom. After receiving the symptom, Fal-

on searches for models of OF messages related to the target host

nd then identifies the deformed host discovery model ( Fig. 8 (b))

nd corresponding host purge model ( Fig. 8 (a)). Next, Falcon

oints out the problematic node in L2switch’s Addresstracker mod-

le by conducting differential checking on the deformed model and

he reference model of host discovery ( Fig. 8 (c)). Following static

ecovery in the Addresstracker module shows that the culprit is the
5 A OpenFlow network emulator: http://mininet.org/ i
mproper TimestampUpdateInterval 6 value configured in the module

hich makes it not update the address in time and L2switch Host-

racker module cannot learn the host consequently. Finally, Falcon

onfirms the root cause with our replay engine and reports the di-

gnosis result. 

Bug-6937 [38] : In the cluster mode, the routed RPC is a popular

emote invocation protocol for collaborative processing among dis-

ributed controllers. In this protocol, when a routed RPC service is

egistered on a controller node, all invocations to the service from

ther controllers in the cluster will be automatically routed to the

ontroller node. However, there is a bug [38] that says after a con-

roller is isolated and then rejoin the cluster, the routed RPC invo-

ation initiated from the controller will fail with a No Implementa-

ion Available error. 

In a 3-node controller cluster, we reproduce this bug by launch-

ng routed RPC invocations on a controller node that is rejoined

fter isolation and other nodes, respectively. As Bug-6937 reports,

he invocation launched on the rejoined controller node fails, while

nvocations initiated on other nodes succeed. Next, we send re-

ently models and the symptom to the simulation environment.

ith this symptom, Falcon identifies the behavior model of the

ailed request and its successful reference model. The differential

hecking on them indicates the difference is in the Sal-Remoterpc-

onnector module. 7 After performing corresponding static analysis,

alcon points out the key context, clusterMembers 8 , which does

ot contain the address of the rejoined controller. It then mines

he related models for the context (Line 8 in Algorithm 2 ) and

nds that the behavior model corresponding to the processing of

he Gossip 

9 UnreachableMember message involved modifications to

he context. With the diagnosis report, we find that the process-

ng of the UnreachableMember message removed the address of

he isolated controller from the clusterMembers , but the behav-

or model corresponding to the processing of the ReachableMem-

er message on behalf of the rejoining controller node did not add

he address back to the context. At this point, the design fault of

ncomplete cluster healing is successfully diagnosed. 

.3. Performance measurement 

Falcon may introduce performance impact on controllers for

anaging networks. The performance of a controller can be mea-

ured in two procedures: network initialization (i.e., topology

uilding) and network maintenance. In the former procedure, the
8 An array of active nodes in a cluster. 
9 ODL uses Gossip protocol [39] to broadcast and maintain members reachability 

n a cluster. 

http://mininet.org/
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Fig. 8. Simplified System Behavior Models in Bug-5816 [37] . 

Fig. 9. Latency and throughput evaluation of ODL, A-ODL, and F-ODL in the single controller mode. We evaluated latency and throughput impact introduced by Falcon on 

controllers handling OpenFlows messages and RESTful requests, respectively. 
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a  
controller needs to discovery network links and generates flow

rules to build links among switches. During network maintenance,

the controller needs to handle OpenFlow (OF) messages sent from

the edge switches for routing packets from their connected hosts.

Thus, to evaluate the performance impact of Falcon , we follow the

evaluation method designed in [40] and perform evaluations from

two aspects: (1) Throughput and latency for network maintenance,

and (2) Network topology building time. 

8.3.1. Throughput and latency 

Deploying Falcon ’s trace agent into controllers may introduce

delays in processing input events. We evaluated this delay by mea-

suring the controller latency (i.e., how much time it takes to pro-

cess an event) and throughput (i.e., how many events it can pro-

cess per second) in processing OF messages and NBI requests with-

out and with Falcon (F-ODL), respectively. Since Falcon ’s instru-

mentation is built on ASM which can reduce bytecode size to op-

timize code execution efficiency, we also directly used ASM to in-

strument ODL (A-ODL) by reusing Falcon ’s in-rules with a sim-

ple value add instruction action . Different from the preliminary

version [1] , we performed our evaluations both for the single and

cluster controller modes, in which each ODL controller is run in

a virtual machine (allocated with 12 cores CPU and 20 G mem-

ory) installed in our server. In the cluster mode, we launched an

ODL cluster with three controller nodes. 10 In addition, we ran our

benchmark tools directly in our server. We conducted atop ODL

controllers (0.6.1 version) and performed each test 30 times. The

average results under the two modes are shown in Figs. 9 and 10 ,

respectively. 
10 Note that increasing the cluster size can improve the networking capability of 

the control plane and thus shall release the performance impact of Falcon due to 

distributed workload. Thus, we do not further change the cluster size to conduct 

more evaluation. 

i  

r  

b  

O  

r  
OpenFlow messages : We measured the performance of con-

rollers in processing OF messages by running CBench [41] , a

enchmarking tool for testing OF controllers, in latency and

hroughput mode, respectively. To process OF messages, ODL uti-

izes three major L2switch, OpenFlowplugin , and OpenFlowJava plug-

ns, in which there totally exist 19 functional modules. Falcon gen-

rated 102 in-rules to instrument these modules in each controller.

e tested the latency by running CBench configured with a simu-

ated switch connecting to 10,0 0 0 unique MAC addresses (i.e., sim-

lated hosts). In the throughput testing, the number of switches

anged from 10–150, while each switch connected to 200 unique

osts. 

In the single mode, as shown in Fig. 9 (a) and (b), A-ODL

ains the best performance with lower latency (32.44%) and av-

rage higher throughput (21.79%) than ODL. F-ODL gains better la-

ency than ODL (18.16%). When connecting with a small number

f switches (less than 70 in Fig. 9 (b)), F-ODL can also gain better

hroughput than ODL, e.g., 26.36% with 10 switches. Its through-

ut performance then starts to be lower than ODL as the num-

er of switches increases to more than about 70. In F-ODL, more

hreads need to be allocated for the delivery and processing of

race messages, which leads to throughput degradation (8.56% on

verage). After the number of switches was greater than 70, F-ODL

onsumed more processing resource than the one the VM can pro-

ide. As measured in [42] , the time to generate a new rule after

he controller receives a request could be more than 10ms, which

s far greater than the introduced delays. 

In most network scenarios, networks are usually managed by

 controller cluster. This mode can improve the network availabil-

ty, but at the cost of computing resources since more processing

esources need to be scheduled for state synchronization and load

alance among controllers. As shown in Fig. 10 , the performance of

DL cluster is decreased both for processing OF messages and NBI

equests than in the single mode, e.g., a higher latency (25.5%) of
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Fig. 10. Latency and throughput evaluation of ODL, A-ODL, and F-ODL in the controller cluster mode. 
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Fig. 11. Topology building time evaluation of a 3-controller cluster on (a) linear 

and (b) fat-tree topology networks. In a linear network, all switches are two-paired 

except the edges which are connected to one switch. That is for a linear network 

containing k switches, it has k − 1 links. In a fat-tree network, k pods mean the 

network consists of k 3 /4 hosts and 5 k 2 /4 switches with k 3 /2 links. 
rocessing OF messages in the cluster. In the cluster mode, A-ODL

nd F-ODL both can gain better performance than ODL, i.e., 41.38%

nd 23.78% in latency, and 37.83% and 15.81% in throughput, re-

pectively. Different from the single mode, F-ODL can always have

etter throughput than ODL. The fundamental reason lies in that

F messages are balanced among three controllers in the cluster

nd the number of OF messages required to be processed in each

ontroller is decreased. 

RESTful requests : ODL utilizes RESTful protocols to format its

BIs. We tested the performance impact on processing RESTful re-

uests with ODL Neutron plugin which provides 30 kinds of REST-

ul APIs (e.g., networking and QoS) with 185 kinds of requests (GET,

OST, PUT, DELETE). These RESTful requests were generated and

ent to ODL Neutron by the event replay engine. Falcon generated

4 in-rules to track Neutron plugin (containing 4 modules) in each

ontroller. We measured the processing latency of RESTful requests

y recording the time interval between when a RESTful request is

ent out and its response is received in the engine. To evaluate

DL’s throughput, we built multiple concurrent connections (rang-

ng from 1 to 28) between the engine and ODL to send requests

each connection will send 1850 requests) and counted the num-

er of responses that can be received per second in our engine. 

Fig. 9 (c) demonstrates the average result of latency testing in

he single mode, where A-ODL decreases the latency in processing

ET (44.97%), POST (44.87%), PUT (48.39%), and DELETE (44.41%)

equests (45.35% reduction totally) and F-ODL is also faster than

DL (43.96%, 42.33%, 45.66% and 42.44% latency reduction (43.54%

otally) in processing four these types of requests, respectively).

ig. 9 (d) demonstrates the results of throughput evaluations, in

hich A-ODL and F-ODL both gain better throughput than ODL

47.05% and 28.26% on average, respectively). Different from OF

essages, F-ODL always has better performance than ODL in pro-

essing RESTful requests in spite of the number of connections in-

reases. 

In the cluster mode, as shown in Fig. 10 (c) and (d), A-ODL

nd F-ODL also obtain better processing performance. But compar-

ng to ODL, the average latency of processing these four types of

ESTful requests has only 14.61%, 13.51%, 41.76%, and 13.46% re-

uction (17.47% totally) in A-ODL, 9.86%, 12.83%, 34.5%, and 12.55%

eduction (14.63% totally) in F-ODL, respectively. More difference is

hat in the single mode, when the number of connections is larger

han around 10, the throughput in all ODLs starts to decrease, but

oes not in the cluster mode. In the cluster mode, the through-

ut of process requests in ODL increases gradually as the number

f connections increases, but A-ODL and F-ODL can still gain bet-

er throughput than ODL (87.09% and 63.89% on average, respec-

ively). When the number of connections is more than 8, A-ODL

nd F-ODL can have a stable throughput, but not exceed the peak

hroughput in the single mode. But with around 20 connections,

-ODL’s throughput slightly decreases. The main reasons for such

ifferent performance between two modes and also different from
rocessing OF messages come from two aspects: (1) RESTful re-

uests have far lower arrival rate than OF messages and therefore

DL has lower CPU workload; (2) Falcon needs fewer in-rules to

over invocations in Neutron plugin than OF related plugins, which

ntroduces less computing overhead. 

.3.2. Network topology building time 

The speed of building the underlying physical network topol-

gy is another important performance metric for SDN controllers.

herefore, we measured the impact of Falcon on the speed of

he control plane handles two common types of network topolo-

ies (linear and fat-tree) with different size of switch nodes. The

peed can be measured by accounting the topology building time

hat a controller processes Link Layer Discovery Protocol (LLDP)

ackets to be aware of network links. Following the evaluation

ethodology in [40] , we build network topologies by Mininet

43] (a system for rapidly prototyping large networks) and ex-

ract building time from controller logs. ODL uses a module, called

opology-lldp-discovery , in OpenFlowplugin to process

LDP packets. Thus, we calculate the time gap as between times-

amps in starting and ending logs of LLDP processing generated

rom this module as the building time. Note that the building time

lso includes Mininet building time [40] . For managing networks,

 controller cluster is more scalable than a single controller. Thus,

ur evaluation was performed with a 3-controller cluster. Fig. 11

lots our results on the topic of topology building time. 

The linear topology is the simplest one, on which F-ODL and

DL have the performance characteristic similar to the through-

ut and latency evaluation. That is as shown in Fig. 11 (a), com-

ared to ODL, F-ODL can achieve a more stable and lower building

ime thanks to ASM optimization. Unlike linear topology, a fat-tree

opology has more links, which requires controllers handling more

LDP packets. As we can observe in Fig. 11 (b), with a small size of

etwork topology, F-ODL can outperform than ODL. As the num-
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ber of pods is greater than 10 (containing 125 switches and 500

links), F-ODL and ODL can achieve similar topology building time,

but the one achieved by F-ODL is more stable. After the number

of pods reaches 18 (containing 405 switches and 2916 links), the

building time achieved by ODL is lower than the one achieved by

F-ODL. In our evaluation environment, it shall be a network size

where Falcon starts to introduce scalability degradation. The rea-

son is similar to the performance decreasing in a single controller

mode that the processing/memory resource required by F-ODL is

more than ODL and starts to exhaust all available resource of the

controller as the growth of network size. Providing diagnosis func-

tionality for SDN control plane is inevitable to involve scalability

issue to networking. We believe this performance impact is accept-

able for normal networks since a large network is usually divided

into several domains to distribute workload and each domain is

managed by a controller cluster for assuring network availability.

Thus, Falcon shall be able to run in a larger network with lower

performance impact by allocating more computer resource to con-

trollers and increasing the cluster size. 

9. Discussion 

Our experimental evaluation shows that while Falcon is capa-

ble of diagnosing faults in the SDN control plane, it does not intro-

duce explicit performance overhead in most cases thanks to ASM’s

optimization on bytecode. Here, we further discuss three limita-

tions of Falcon : 

Intrusive profiling : Falcon is a gray-box approach which is intru-

sive and may induce performance and security issues. Benefiting

from ASM’s optimization on bytecode, Falcon involves an accept-

able overhead on SDN network management. However, incorrect

in-rules may introduce errors to controllers. Thus, in-rules’ correct-

ness verification shall be addressed in our future work. 

Model completeness: Falcon relies on inserting in-rules to

track system behaviors. However, third-party middlewares (closed

source or written in other languages) or the incompleteness of in-

rules may lead to disrupting of modeling. This problem can be par-

tially alleviated by applying multi-modal similarity check on the

input and output of middlewares [44] . 

Reference sufficiency: The sufficiency of reference models is the

key factor affecting Falcon ’s diagnosis effect. Existing solutions

rely on predefined invariants as the references [6,8,11] , or sim-

ply assume that there have been sufficient Ref. [19] . However,

the complicated networks and frequently evolved control software

suggest that no matter how much effort is spent on software test-

ing, it is hard to exhaust all system behaviors as references before

deployed as productions. Since Falcon is deployed on controllers

running in the production environment, it can usually get enough

normal models to enrich its reference library unless the correct

model does not exist at all. Note that this is not a common sit-

uation. 

10. Conclusion 

SDN is an important technique for future networks. In this pa-

per, we have presented Falcon , a system for locating root causes

of faults occurred in the SDN control plane. As a gray-box solution,

we design a rule-based hybrid tracing mechanism to exploit the

internal system behaviors, model these behaviors with a context-

aware model and realize a differential fault localization mechanism

on two system behavior models to locate the root causes of faults.

Currently, Falcon can support both for the single controller mode

and distributed controller mode, We have built a prototype of Fal-

con for OpenDaylight platform. Our evaluation shows that Falcon

is practical for real controller runs. 
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