
Towards Automated Inter-Service Authorization for
Microservice Applications

Xing Li
Zhejiang University

Yan Chen
Northwestern University

Zhiqiang Lin
The Ohio State University

CCS CONCEPTS

• Security and privacy → Authorization; • Software and its

engineering → Cloud computing.

KEYWORDS

Microservice, Policy-Based Access Control, Automation

ACM Reference Format:

Xing Li, Yan Chen, and Zhiqiang Lin. 2019. Towards Automated Inter-
Service Authorization for Microservice Applications. In SIGCOMM ’19: ACM
SIGCOMM 2019 Conference (SIGCOMM Posters and Demos ’19), August 19–23,
2019, Beijing, China. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3342280.3342288

1 INTRODUCTION

As an emerging software architecture, the microservice idea di-
vides traditional monolithic software into multiple microservices
according to its business boundaries. Microservices communicate
with each other through lightweight network API invocations (e.g.,
HTTP, gRPC). Each of them can be independently developed, de-
ployed, and upgraded, which greatly improves the flexibility of soft-
ware development and scaling. Benefiting from the recent booming
of container technologies, microservice has been widely used as
the basic architecture of modern cloud applications.

However, in this environment, communications between mi-
croservices are exposed through the network, which creates a po-
tential attack surface. It is unrealistic to rely solely on network
boundaries to provide full security protection. When a microser-
vice is compromised, it can send malicious requests to other mi-
croservices to initiate attacks or steal data. Therefore, in addition to
using SSL/TLS to protect the communications amongmicroservices,
popular microservice infrastructures such as Kubernetes [1] and
Istio [2] also provide inter-service authorization mechanisms to
specify which invocations a microservice can initiate. For example,
a compromised logging service might talk to a backend service to
get sensitive information, and the administrator can specify that
only the frontend service can access the backend service to defend
against this attack.

In order to achieve high control flexibility, the inter-service au-
thorization mechanisms usually use complex access control policies
to perform fine-grained authorization. Currently, however, this still

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342288

Solution C F A

Document-based approaches [3, 4] ✗ ✗ ✓

History-based approaches [5] ✗ ✓ ✗

Jarvis (proposed approach) ✓ ✓ ✓

Table 1: Comparison of Jarvis with existing works.

relies on the careful manual configuration by the administrator,
which is error-prone and tedious. Besides that, due to the large
scale of modern microservice applications1, it is unrealistic for ad-
ministrators to manually configure and maintain access control
policies for every microservice. To make matters worse, microser-
vice’s dynamic nature of frequent iterations requires the access
control policies to be updated accordingly in time, which is also
an "impossible mission" for administrators. Therefore, to make a
powerful access control mechanism really work here, automation
is essential, otherwise it is just a castle in the air.

The automation of inter-service authorization requires the au-
tomated generation, maintenance, and update of access control
policies. An ideal solution is expected to fulfill the following goals,
which face respective challenges:

• Completeness (C). To generate reasonable access control
policies, it needs to automatically extract the invocation
logics between microservices from the application’s business
logic. The challenge is how to ensure the completeness of
logic extraction, since microservices may be developed in
different languages and interact in diverse ways.

• Fine Granularity (F). To generate fine-grained access con-
trol policies, in addition to the dependencies amongmicroser-
vices, it also needs to mine the detailed attributes of the
inter-service invocations. This is also challenging because
these attributes are varied and usually not explicit.

• Agility (A). Given the dynamic nature of microservices, it
needs to timely perceive the changes in microservice invoca-
tion logics and dynamically adjust the access control policies.
The challenge is how to quickly infer and incrementally up-
date the access control policies in large scale scenarios.

Unfortunately, these goals can hardly be jointly addressed by
merely adopting existing security policy automation studies. The
recent studies utilize machine learning methodologies to mine and
extract reasonable security policies from documents [3, 4] or his-
torical operation data [5]. However, as demonstrated in Table 1, the
document-based approaches are usually not fine-grained and not
complete enough (e.g., Text2Policy [4] achieved an average recall of
89.4%); the history-based approaches relies heavily on the quality
of historical data, and only sufficient historical data can lead to
complete security policies, which limits their agility.

Inter-service authorization should follow the business logic of
microservice applications and meet the principle of least privilege.
1Twitter has O (103) microservices in 2016. (http://bit.ly/twitter-linuxcon)

3

https://doi.org/10.1145/3342280.3342288
https://doi.org/10.1145/3342280.3342288
https://doi.org/10.1145/3342280.3342288

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China Xing Li et al.

How does it works?

Code Submit

Microservice Infrastructure

Master Node Master Node

Manifest file
of Service E

D

B

C

A

E
Source code
of Service E

Static Analysis
Engine

Master Node

Permission
Engine

Worker
Node-1

Service
Registration Policy DB

Worker Node-2

Service Deploy

Configuration
Extraction Engine

CI Server

Service E

Service Build

Figure 1: The architecture and workflow of Jarvis.

Thanks to mature code review mechanisms, the code of microser-
vices is a trusted material that can accurately reflect their business
logics. Therefore, when a microservice initiates a request that is not
in its code to other microservices or external network, we consider
the request to violate the business logic, that is, the microservice is
compromised and the request is malicious. Based on this insight, we
propose Jarvis as the first automated inter-service authorization
mechanism for microservice applications. Seamlessly integrated
with microservice lifecycle and infrastructure, it automatically ex-
tracts the possible invocations a microservice may initiate by static
analysis, and then generates access control policies with informa-
tion such as service registration at deployment time. Besides that,
Jarvis monitors the changes of microservices and quickly adjusts
corresponding access control policies when the changes occur.

2 SYSTEM DESIGN

As shown in Figure 1, the architecture of Jarvis includes an offline
Static Analysis Engine, an online Configuration Extraction Engine
and an online Permission Engine located on the master node of
the microservice infrastructure. Next, we will describe the system
design of Jarvis from the three steps of its workflow.

2.1 Request Extraction

To obtain complete dependencies among microservices at a fine-
grained level, it is necessary to obtain detailed information about
API invocations (e.g., URL and method for HTTP calls). To this end,
Jarvis uses a program-slice based static analysis mechanism to ex-
tract requests and related attributes from microservices developed
in different languages.

The dotted line in Figure 1 depicts the standard CI/CD2 process
for microservice E. At first, the source code of E is submitted to
the CI server, where a series of tools run for automated testing
and code checking. The Static Analysis Engine is deployed here to
extract the invocations that E may initiate and generate a mani-
fest file to describe them. Microservices use a limited number of
protocols to communicate, such as HTTP, gRPC, etc. Therefore,
to narrow down the state space and accelerate the static analysis,
Jarvis first scans the code of E along the control flow and iden-
tifies the statements that make network API invocations, such as
requests.get(). Next, it uses these as starting points to perform
backward taint propagation on the control flow to get the pro-
gram slice related to each request. Finally, Jarvis extracts useful
attributes, such as URL,method , etc., from the slices by semantic
analysis, and represents indeterminate fields that depend on the
input of upstream requests with wildcards.
2Continuous integration & continuous deployment, an automatic workflow for mi-
croservice development and deployment.

2.2 Policy Generation

To generate fine-grained access control policies, we take all informa-
tion that reflects the invocation relationships among microservices
into account. There may be instances of multiple versions of the
same microservice in the system, and they may have different man-
ifest files. We process them separately and distinguish them by tags
in the access control policy. Besides the manifest file describing
what invocations a microservice may make according to its code
logic, Jarvis identifies which microservices provide the interfaces
it calls by the actual service registration information, that is, finds
the callees. In addition, inter-service traffic management rules can
also affect the fine-grained authorization. For example, if the ad-
ministrator specifies service B to send all requests with feature f
to service D and the rest to serviceC , a request q with f should not
be able to access C . Hence, Jarvis also extracts this kind of rules
from the Policy DB of the infrastructure. With all the data sources
mentioned above, the Permission Engine eventually generates access
control policies, aggregates them for management and subsequent
updates, and deploys them into the Policy DB. The following policy
enforcement will be performed by the microservice infrastructure.

2.3 Policy Update

The deployment, upgrade, and policy distribution of microservices
are all achieved by the microservice infrastructure and correspond-
ing configuration files (e.g., deploy.yaml). Therefore, Jarvis moni-
tors the infrastructure and uses pruning to quickly deduce whether
the changewill affect inter-service authorizationwhen themicroser-
vice application changes. If so, it uses a dynamic update mechanism
to efficiently calculate the adjustments that need to be made on the
access control policies and incrementally update them as needed
for large scale microservice applications.

3 PRELIMINARY RESULTS

We evaluated the static analysis mechanismwith the 3 most popular
open-source microservice demos3, which consist of 22 microser-
vices developed in 6 languages. Jarvis extracted 37 HTTP requests,
20 gRPC requests, and 39 TCP requests from these microservices,
which achieved 100% coverage over the ground truth obtained by
manual analysis. The result shows the completeness of Jarvis,
which is the basis for automated authorization.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of China
(2017YFB0801703) and the Key Research and Development Program
of Zhejiang Province (2018C01088).
3
Bookinfo: http://bit.ly/bookInfo, Hipster Shop: http://bit.ly/hipstershop, and Sock

Shop: http://bit.ly/sock-shop.

4

Towards Automated Inter-Service Authorization for Microservice Applications SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES

[1] The Linux Foundation. Production-Grade Container Orchestration - Kubernetes,
2019. Accessed on 2019-6-30.

[2] Istio. Istio: Connect, secure, control, and observe services., 2019. Accessed on
2019-6-30.

[3] Manar Alohaly, Hassan Takabi, and Eduardo Blanco. A deep learning approach for
extracting attributes of abac policies. In Proceedings of the 23nd ACM on Symposium

on Access Control Models and Technologies, pages 137–148. ACM, 2018.
[4] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Automated

extraction of security policies from natural-language software documents. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 12. ACM, 2012.

[5] Leila Karimi and James Joshi. An unsupervised learning based approach for mining
attribute based access control policies. In 2018 IEEE International Conference on
Big Data (Big Data), pages 1427–1436. IEEE, 2018.

5

	1 Introduction
	2 System Design
	2.1 Request Extraction
	2.2 Policy Generation
	2.3 Policy Update

	3 Preliminary Results
	References

